ABSTRACT
There are high mortality and morbidity rates from poisonous snakebites globally. Many medicinal plants are locally used for snakebite treatment in Uganda. This study aimed to determine the in vitro anti-venom activities of aqueous extract and oils of Toona ciliata against Naja melanoleuca venom. A mixture of venom and extract was administered intramuscularly in rats. Anticoagulant, antiphospholipase A2 (PLA2) inhibition assay, and gel electrophoresis for anti-venom activities of oils were done. The chemical constituents of the oils of ciliata were identified using Gas chromatography-tandem mass spectroscopy (GC-MS/MS). The LD50 of the venom was 0.168 ± 0.21 µg/g. The venom and aqueous extract mixture (1.25 µg/g and 3.5 mg/g) did not cause any rat mortality, while the control with venom only (1.25 µg/g) caused death in 1 h. The aqueous extract of T. ciliata inhibited the anticoagulation activity of N. melanoleuca venom from 18.58 min. to 4.83 min and reduced the hemolytic halo diameter from 24 to 22 mm. SDS-PAGE gel electrophoresis showed that oils completely cleared venom proteins. GC-MS/MS analysis showed that the oils had sesquiterpene hydrocarbons (60%) in the volatile oil (VO) and oxygenated sesquiterpenes (48.89%) in the non-volatile oils (NVO). Some major compounds reported for the first time in T. ciliata NVOs were: Rutamarin (52.55%), ß-Himachalol (9.53%), Girinimbine (6.68%) and Oprea1 (6.24%). Most compounds in the VO were reported for the first time in T. ciliata, including the major ones Santalene (8.55%) and Himachal-7-ol (6.69%). The result showed that aqueous extract and oils of T. ciliata have anti-venom/procoagulant activities and completely neutralized the venom. We recommend a study on isolation and testing the pure compounds against the same venom.
Subject(s)
Antivenins , Oils, Volatile , Rats , Animals , Antivenins/pharmacology , Elapid Venoms/analysis , Toona , Tandem Mass Spectrometry , Oils, Volatile/pharmacology , WaterABSTRACT
When strands of DNA encapsulate silver clusters, supramolecular optical chromophores develop. However, how a particular structure endows a specific spectrum remains poorly understood. Here, we used neutron diffraction to map protonation in (A2C4)2-Ag8, a green-emitting fluorophore with a "Big Dipper" arrangement of silvers. The DNA host has two substructures with distinct protonation patterns. Three cytosines from each strand collectively chelate handle-like array of three silvers, and calorimetry studies suggest Ag+ cross-links. The twisted cytosines are further joined by hydrogen bonds from fully protonated amines. The adenines and their neighboring cytosine from each strand anchor a dipper-like group of five silvers via their deprotonated endo- and exocyclic nitrogens. Typically, exocyclic amines are strongly basic, so their acidification and deprotonation in (A2C4)2-Ag8 suggest that silvers perturb the electron distribution in the aromatic nucleobases. The different protonation states in (A2C4)2-Ag8 suggest that atomic level structures can pinpoint how to control and tune the electronic spectra of these nanoscale chromophores.
Subject(s)
DNAABSTRACT
BACKGROUND: There are high mortality and morbidity rates due to poisonous snakebites globally with sub-Saharan Africa having some of the highest cases. However, traditional medicine practitioners (TMP) have been treating snakebites in Uganda for long despite the fact that few studies have been conducted to document such vital and rich indigenous traditional knowledge before it is lost. This study aimed to document the medicinal plant species used by experienced TMP in treating snakebite envenomation in selected post-conflict parts of Uganda. An ethnopharmacological survey was conducted in Kitgum, Serere, Kaberamaido and Kaabong districts in Uganda. Twenty-seven TMP with expertise in treating snakebites were purposively identified using the snowball technique and interviewed using semi-structured questionnaires. Data were analysed using simple descriptive statistics. RESULTS: Sixty plant species from 28 families were documented with high consensus among the isolated indigenous Ik tribe of Kaabong district. Most of the plant species used were from the Asteraceae and Fabaceae families with eight species each. The genus Echinops was the most well-represented with three species. The most commonly used plant species were of citation were Steganotaenia araliaceae (16), Microglossa pyrifolia (Lam.), Gladiolus dalenii Van Geel (13), Aframomum mildbraedii Loes. (11), Jasminum schimperi Vatke and Cyathula uncinulata (Schrad) Schinz (10) and Crinum macowanii Baker and Cyphostemma cyphopetalum (Fresen.) Desc. ex Wild & R.B. Drumm (10). S. araliaceae which was mentioned by all the TMP in the Ik community was used for first aid. Most of the plant species were harvested from the wild (68.75%) and were herbs (65.0%) followed by trees (23.3%). The most commonly used plant parts were roots (42.6%) and leaves (25.0%). Thirteen different methods of preparation and administration were used. Most of the medicines were administered orally (61.2%) and topically (37.6%). The commonest methods of oral application were cold water infusions (32.5%) and decoctions (21.7%). CONCLUSIONS: TMP widely use several medicinal plant species for treating snakebite envenomation in the selected post-conflict regions of Uganda.
ABSTRACT
Clear-cell renal cell carcinoma (ccRCC) presents challenges to clinical management because of late-stage detection, treatment resistance, and frequent disease recurrence. Metabolically, ccRCC has a well-described Warburg effect utilization of glucose, but how this affects complex carbohydrate synthesis and alterations to protein and cell surface glycosylation is poorly defined. Using an imaging mass spectrometry approach, N-glycosylation patterns and compositional differences were assessed between tumor and nontumor regions of formalin-fixed clinical ccRCC specimens and tissue microarrays. Regions of normal kidney tissue samples were also evaluated for N-linked glycan-based distinctions between cortex, medullar, glomeruli, and proximal tubule features. Most notable was the proximal tubule localized detection of abundant multiantennary N-glycans with bisecting N-acetylglucosamine and multziple fucose residues. These glycans are absent in ccRCC tissues, while multiple tumor-specific N-glycans were detected with tri- and tetra-antennary structures and varying levels of fucosylation and sialylation. A polycystic kidney disease tissue was also characterized for N-glycan composition, with specific nonfucosylated glycans detected in the cyst fluid regions. Complementary to the imaging mass spectrometry analyses was an assessment of transcriptomic gene array data focused on the fucosyltransferase gene family and other glycosyltransferase genes. The transcript levels of the FUT3 and FUT6 genes responsible for the enzymes that add fucose to N-glycan antennae were significantly decreased in all ccRCC tissues relative to matching nontumor tissues. These striking differences in glycosylation associated with ccRCC could lead to new mechanistic insight into the glycobiology underpinning kidney malignancies and suggest the potential for new therapeutic interventions and diagnostic markers.
Subject(s)
Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Kidney/metabolism , Polysaccharides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Carcinoma, Renal Cell/chemistry , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/genetics , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Gene Expression Regulation, Neoplastic , Glycomics/methods , Glycosylation , Humans , Kidney/chemistry , Kidney/diagnostic imaging , Kidney Neoplasms/chemistry , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/genetics , Polycystic Kidney Diseases/diagnostic imaging , Polycystic Kidney Diseases/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Tissue Array AnalysisABSTRACT
The RepliVax® vaccine (RV) platform is based on flavivirus genomes that are rationally attenuated by deletion. These single-cycle RV vaccine candidates targeting flavivirus pathogens have been demonstrated to be safe, highly immunogenic, and efficacious in animal models, including non-human primates. Here we show utility of the technology for delivery of a non-flavivirus immunogen by engineering several West Nile-based RV vectors to express full-length rabies virus G protein. The rabies virus G protein gene was incorporated in place of different West Nile structural protein gene deletions. The resulting RV-RabG constructs were demonstrated to replicate to high titers (8 log10 infectious particles/ml) in complementing helper cells. Following infection of normal cells, they provided efficient rabies virus G protein expression, but did not spread to surrounding cells. Expression of rabies virus G protein was stable and maintained through multiple rounds of in vitro passaging. A sensitive neurovirulence test in 2-3 day old neonatal mice demonstrated that RV-RabG candidates were completely avirulent indicative of high safety. We evaluated the RV-RabG variants in several animal models (mice, dogs, and pigs) and demonstrated that a single dose elicited high titers of rabies virus-neutralizing antibodies and protected animals from live rabies virus challenge (mice and dogs). Importantly, dogs were protected at both one and two years post-immunization, demonstrating durable protective immunity. The data demonstrates the potential of the RepliVax® technology as a potent vector delivery platform for developing vaccine candidates against non-flavivirus targets.