Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 119(1): 84-99, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578218

ABSTRACT

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Subject(s)
Phenylalanine , Plant Leaves , Solanum lycopersicum , Volatile Organic Compounds , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Phenylalanine/metabolism , Volatile Organic Compounds/metabolism , Animals , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/parasitology , Benzaldehydes/metabolism , Benzaldehydes/pharmacology , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Acetaldehyde/pharmacology , Moths/physiology , Moths/drug effects , Plant Diseases/parasitology , Plant Diseases/immunology , Manduca/physiology
2.
Chirality ; 36(8): e23702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138008

ABSTRACT

Pistacia palaestina Boiss. is a common tree in the Mediterranean maquis. The leaves of this plant accumulate defensive monoterpenes, whose levels greatly increase in galls induced by the aphid Baizongia pistaciae. We previously found a significant chemopolymorphism in monoterpene content among individual trees, but the chirality of these monoterpenes was unknown. Although most plant species specifically accumulate one enantiomeric form of a given compound, P. palaestina individuals display chemopolymorphism in the chirality of the key monoterpenes accumulated. We report here a marked enantiomeric variation for the limonene, α- and ß-pinene, camphene, sabinene, δ-3-carene, and terpene-4-ol content in leaves and galls of nine different naturally growing P. palaestina trees. Interestingly, insect-induced gall monoterpene composition is an augmentation of the specific enantiopolymorphism originally displayed by each individual tree.


Subject(s)
Monoterpenes , Pistacia , Plant Leaves , Plant Leaves/chemistry , Monoterpenes/chemistry , Pistacia/chemistry , Stereoisomerism , Animals , Aphids , Plant Tumors/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL