ABSTRACT
Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.
Subject(s)
Brain Diseases , Chemotherapy-Related Cognitive Impairment , Neoplasms , Adult , Child , Humans , BrainABSTRACT
The gastrointestinal microbiota has received increasing recognition as a key mediator of neurological conditions with neuroinflammatory features, through its production of the bioactive metabolites, short-chain fatty acids (SCFAs). Although neuroinflammation is a hallmark shared by the neuropsychological complications of chemotherapy (including cognitive impairment, fatigue and depression), the use of microbial-based therapeutics has not previously been studied in this setting. Therefore, we aimed to investigate the effect of a high fibre diet known to modulate the microbiota, and its associated metabolome, on neuroinflammation caused by the common chemotherapeutic agent 5-fluorouracil (5-FU). Twenty-four female C57Bl/6 mice were treated with 5-FU (400 mg/kg, intraperitoneal, i.p.) or vehicle control, with or without a high fibre diet (constituting amylose starch; 4.7 % crude fibre content), given one week prior to 5-FU and until study completion (16 days after 5-FU). Faecal pellets were collected longitudinally for 16S rRNA gene sequencing and terminal SCFA concentrations of the caecal contents were quantified using gas chromatography-mass spectrometry (GC-MS). Neuroinflammation was determined by immunofluorescent analysis of astrocyte density (GFAP). The high fibre diet significantly altered gut microbiota composition, increasing the abundance of Bacteroidaceae and Akkermansiaceae (p < 0.0001 and p = 0.0179) whilst increasing the production of propionate (p = 0.0097). In the context of 5-FU, the diet reduced GFAP expression in the CA1 region of the hippocampus (p < 0.0001) as well as the midbrain (p = 0.0216). Astrocyte density negatively correlated with propionate concentrations and the abundance of Bacteroidaceae and Akkermansiaceae, suggesting a relationship between neuroinflammatory and gastrointestinal markers in this model. This study provides the first evidence of the neuroprotective effects of fibre via dietary intake in alleviating the neuroimmune changes seen in response to systemically administered 5-FU, indicating that the microbiota-gut-brain axis is a targetable mediator to reduce the neurotoxic effects of chemotherapy treatment.
Subject(s)
Neuroinflammatory Diseases , Propionates , Female , Animals , Mice , RNA, Ribosomal, 16S , Diet , FluorouracilABSTRACT
The neuropsychological symptoms associated with chemotherapy treatment remain a major challenge with their prevention hampered by insufficient understanding of pathophysiology. While long-term neuroimmune changes have been identified as a hallmark feature shared by neurological symptoms, the exact timeline of mechanistic events preceding neuroinflammation, and the relationship between the glial cells driving this neuroinflammatory response, remain unclear. We therefore aimed to longitudinally characterize the neuroimmunological changes following systemic 5-fluorouracil (5-FU) treatment to gain insight into the timeline of events preceding the well-documented chronic neuroinflammation seen following chemotherapy. Eighteen female C57Bl/6 mice received a single intraperitoneal dose of 5-FU and groups were killed at days 1 and 2 (acute timepoint), days 4 and 8 (subacute timepoint), and days 16 and 32 (chronic timepoint). A further six mice were administered with vehicle control with tissues collected from three mice on day 1 and day 32 of the study. The expression of key genes of interest, BCL2, BDNF, TIMP1, MMP-9, MMP-2, TNFα, IL-1ß, and IL-6R were assessed using real time polymerase chain reaction. Levels of neurogenesis were determined through immunofluorescent staining of doublecortin (DCX). The density of microglia and astrocytes were assessed using immunofluorescence staining of Iba1 and GFAP respectively. 5-FU treatment caused significant decreases to DCX staining at acute timepoints (p = 0.0030) which was positively correlated with BCL2 expression levels. An increase to microglial density was observed in the prefrontal cortex (p = 0.0256), CA3 region (p = 0.0283), and dentate gyrus (p = 0.0052) of the hippocampus at acute timepoints. 5-FU caused increases to astrocyte density, across multiple brains regions, at subacute and chronic timepoints which were positively correlated with TNFα, TIMP-1, MMP-2, and IL-6R expression. This study has identified acute objective neuroinflammatory changes suggesting that the role of early intervention should be explored to prevent the development of neuropsychological deficits in the longer-term following chemotherapy.
Subject(s)
Fluorouracil , Tumor Necrosis Factor-alpha , Mice , Female , Animals , Fluorouracil/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Matrix Metalloproteinase 2/metabolism , Neuroinflammatory Diseases , Hippocampus/metabolism , Neurogenesis/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , Microglia/metabolismABSTRACT
The optimization of outcomes for pediatric cancer patients relies on the successful advancement of supportive care to ease the treatment burden and mitigate the long-term impacts of cancer therapy. Advancing pediatric supportive care requires research prioritization as well as the development and implementation of innovations. Like the prevailing theme throughout pediatric oncology, there is a clear need for personalized or precision approaches that are consistent, evidence-based, and guided by clinical practice guidelines. By incorporating technology and datasets, we can address questions which may not be feasible to explore in clinical trials. Now is the time to listen to patients' voices by using patient-reported outcomes (PROs) to ensure that their contributions and experiences inform clinical care plans. Furthermore, while the extrapolation of knowledge and approaches from adult populations may suffice in the absence of pediatric-specific evidence, there is a critical need to specifically understand and implement elements of general and developmental pediatrics like growth, nutrition, development, and physical activity into care. Increased research funding for pediatric supportive care is critical to address resource availability, equity, and disparities across the globe. Our patients deserve to enjoy healthy, productive lives with optimized and enriched supportive care that spans the spectrum from diagnosis to survivorship.