Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Glob Chang Biol ; 29(2): 432-450, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36270797

ABSTRACT

Over the last few decades, there has been an increasing recognition for seagrasses' contribution to the functioning of nearshore ecosystems and climate change mitigation. Nevertheless, seagrass ecosystems have been deteriorating globally at an accelerating rate during recent decades. In 2017, research into the condition of eelgrass (Zostera marina) along the eastern coast of James Bay, Canada, was initiated in response to reports of eelgrass decline by the Cree First Nations of Eeyou Istchee. As part of this research, we compiled and analyzed two decades of eelgrass cover data and three decades of eelgrass monitoring data (biomass and density) to detect changes and assess possible environmental drivers. We detected a major decline in eelgrass condition between 1995 and 1999, which encompassed the entire east coast of James Bay. Surveys conducted in 2019 and 2020 indicated limited changes post-decline, for example, low eelgrass cover (<25%), low aboveground biomass, smaller shoots than before 1995, and marginally low densities persisted at most sites. Overall, the synthesized datasets show a 40% loss of eelgrass meadows with >50% cover in eastern James Bay since 1995, representing the largest scale eelgrass decline documented in eastern Canada since the massive die-off event that occurred in the 1930s along the North Atlantic coast. Using biomass data collected since 1982, but geographically limited to the sector of the coast near the regulated La Grande River, generalized additive modeling revealed eelgrass meadows are affected by local sea surface temperature, early ice breakup, and higher summer freshwater discharge. Our results caution against assuming subarctic seagrass ecosystems have avoided recent global declines or will benefit from ongoing climate warming.


Subject(s)
Ecosystem , Zosteraceae , Climate Change , Biomass , Temperature
2.
Ann Bot ; 119(7): 1131-1142, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28203721

ABSTRACT

Background and Aims: Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. Methods: A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Key Results: Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Conclusions: Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation.


Subject(s)
Biomass , Ecosystem , Helianthus/physiology , Helianthus/genetics , North America , Phenotype , Phylogeny , Plant Leaves/physiology , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL