Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 783
Filter
Add more filters

Publication year range
1.
J Med Virol ; 96(3): e29502, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450817

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of anti-acquired immunodeficiency syndrome treatment regimen. In the present work, with the previously reported compound K-16c as lead, a series of novel 2,4,5-trisubstituted pyrimidine derivatives were designed based on the cocrystal structure of K-16c/RT, with the aim to improve the anti-human immunodeficiency virus type-1 (HIV-1) activities and metabolic stability properties. Compound 11b1 exhibited the most potent antiviral activity against wild-type (WT) and a panel of single mutant HIV-1 strains (EC50 = 2.4-12.4 nM), being superior to or comparable to those of the approved drug etravirine. Meanwhile, 11b1 exhibited moderate cytotoxicity (CC50 = 4.96 µM) and high selectivity index (SI = 1189) toward HIV-1 WT strain. As for HIV-1 RT inhibition test, 11b1 possessed excellent inhibitory potency (IC50 = 0.04 µM) and confirmed its target was RT. Moreover, the molecular dynamics simulation was performed to elucidate the improved drug resistance profiles. Moreover, 11b1 was demonstrated with favorable safety profiles and pharmacokinetic properties in vivo, indicating that 11b1 is a potential anti-HIV-1 drug candidate worthy of further development.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV-1 , Humans , Antihypertensive Agents , Molecular Dynamics Simulation , Nucleosides
2.
J Med Virol ; 96(4): e29594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576317

ABSTRACT

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.


Subject(s)
Anti-HIV Agents , HIV Seropositivity , Humans , Capsid/metabolism , Phenylalanine/pharmacology , Phenylalanine/metabolism , Molecular Docking Simulation , Anti-HIV Agents/pharmacology , Capsid Proteins/metabolism , Anti-Retroviral Agents
3.
Bioorg Chem ; 147: 107340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593532

ABSTRACT

In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.


Subject(s)
Anti-HIV Agents , Biphenyl Compounds , Drug Design , HIV Reverse Transcriptase , HIV-1 , Quinazolines , Reverse Transcriptase Inhibitors , Solubility , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Structure-Activity Relationship
4.
Bioorg Chem ; 148: 107495, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805850

ABSTRACT

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC50 value of 4.14 µM, which was about 5-fold increase in potency than the hit compound A1 (IC50 = 21.49 µM). To gain deeper insights into the structure-activity relationship (SAR), a CoMFA model was constructed to yield reasonable statistical results (q2 = 0.658 and R2 = 0.969). Results from magnesium ion chelation experiments and molecular docking studies revealed that these thiazolopyrimidine inhibitors may exert their inhibitory activity by binding to an allosteric site on RNase H at the interface between subunits p51 and p66. Furthermore, this analog demonstrated favorable physicochemical properties. Our findings provide valuable groundwork for further development of allosteric inhibitors targeting HIV-1 RNase H.


Subject(s)
Drug Design , HIV-1 , Molecular Docking Simulation , Pyrimidines , Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , HIV-1/drug effects , HIV-1/enzymology , Humans , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Molecular Structure , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ribonuclease H, Human Immunodeficiency Virus/antagonists & inhibitors , Ribonuclease H, Human Immunodeficiency Virus/metabolism
5.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731613

ABSTRACT

Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.


Subject(s)
Anti-HIV Agents , Molecular Docking Simulation , Pyrimidines , Quantitative Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Humans , Molecular Dynamics Simulation , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/metabolism , Drug Design , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Molecular Structure
6.
J Med Virol ; 95(3): e28635, 2023 03.
Article in English | MEDLINE | ID: mdl-36869780

ABSTRACT

Hepatitis B virus (HBV) infection and type-2 diabetes mellitus (T2DM) affect millions of individuals worldwide, whereas their interplay remains largely unclear. Here, we analyzed a large cohort of 330 HBV-infected inpatients with T2DM (so-called HBV + T2DM patients) and 330 T2DM inpatients without HBV infection (T2DM patients). Poor glycemic control was defined by glycated hemoglobin (HbA1c) ≥ 7%. Among 330 HBV + T2DM patients, 252 (76%) aged ≥ 50 years, 223 (68%) were males, 205 (62%) experienced poor glycemic control. The propensity-score matching approach was applied to match patient age, gender, comorbidities, and antidiabetic treatment between T2DM + HBV and T2DM patients. Compared with T2DM patients, HBV + T2DM patients had poorer glycemic control, longer hospitalization length, and higher alanine aminotransferase (p < 0.05). HBV + T2DM patients with HBV DNA ≥ 100 IU/mL or HBsAg ≥ 0.05 IU/mL had worse HbA1c control than T2DM patients without HBV infection (p < 0.05). HBV + T2DM patients who received no anti-HBV therapy had worse HbA1c control than HBV + T2DM patients receiving anti-HBV therapy (p < 0.05). Both insulin and anti-HBV therapy were significant factors associated with glycemic control in HBV + T2DM patients. Overall, HBV + T2DM patients exhibited poorer glycemic control than T2DM patients, but their clinical outcomes were likely improved by insulin plus anti-HBV treatment. Early management of HBV infection likely contributes to better clinical outcomes in HBV-infected patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Hepatitis B , Male , Humans , Female , Retrospective Studies , Glycated Hemoglobin , Glycemic Control , Blood Glucose , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hepatitis B/complications , Hepatitis B/drug therapy , Insulin/therapeutic use , Hepatitis B virus/genetics
7.
J Med Virol ; 95(1): e28340, 2023 01.
Article in English | MEDLINE | ID: mdl-36420584

ABSTRACT

Accumulating evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs the adaptive immune system during acute infection. Still, it remains largely unclear whether the frequency and functions of T and B cells return to normal after the recovery of Coronavirus Disease 2019 (COVID-19). Here, we analyzed immune repertoires and SARS-CoV-2-specific neutralization antibodies in a prospective cohort of 40 COVID-19 survivors with a 6-month follow-up after hospital discharge. Immune repertoire sequencing revealed abnormal T- and B-cell expression and function with large T cell receptor/B cell receptor clones, decreased diversity, abnormal class-switch recombination, and somatic hypermutation. A decreased number of B cells but an increased proportion of CD19+ CD138+ B cells were found in COVID-19 survivors. The proportion of CD4+ T cells, especially circulating follicular helper T (cTfh) cells, was increased, whereas the frequency of CD3+ CD4- T cells was decreased. SARS-CoV-2-specific neutralization IgG and IgM antibodies were identified in all survivors, especially those recorded with severe COVID-19 who showed a higher inhibition rate of neutralization antibodies. All severe cases complained of more than one COVID-19 sequelae after 6 months of recovery. Overall, our findings indicate that SARS-CoV-2-specific antibodies remain detectable even after 6 months of recovery. Because of their abnormal adaptive immune system with a low number of CD3+ CD4- T cells and high susceptibility to infections, COVID-19 patients might need more time and medical care to fully recover from immune abnormalities and tissue damage.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Prospective Studies , B-Lymphocytes , Antibodies, Viral , Survivors
8.
Bioorg Med Chem ; 96: 117484, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37976805

ABSTRACT

HIV-1 reverse transcriptase (RT) is considered as one of the most significant targets for the anti-HIV-1 drug design due to their determined mechanism and well-decoded crystal structure. As a part of our continuous efforts towards the development of potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) by exploiting the tolerant region I of NNRTIs binding pocket (NNIBP), the miniaturized parallel synthesis via CuAAC click chemistry reaction followed by in situ biological screening have been performed in this work. The in situ enzyme inhibition screening results showed that 14 compounds exhibited higher or equivalent inhibitory activity compared to the lead K-5a2 and ETR. Anti-HIV-1 activity results indicated that C1N51 displayed the most potent activity (EC50 = 0.01-0.26 µM) against wild-type and a panel of NNRTIs-resistant strains. Moreover, the molecular simulation demonstrated that the newly introduced triazole ring could develop new hydrogen bonds with Lys103 and Pro236, which explained the feasibility of introducing triazole in the tolerant region I of the RT binding pocket.


Subject(s)
Anti-HIV Agents , HIV-1 , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Click Chemistry , Drug Design , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , HIV Reverse Transcriptase , Heterocyclic Compounds, 1-Ring , Structure-Activity Relationship
9.
Bioorg Chem ; 140: 106783, 2023 11.
Article in English | MEDLINE | ID: mdl-37595396

ABSTRACT

Our recent great interest in developing 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) analogs for HIV therapy identified a potent non-nucleoside reverse transcriptase inhibitor (NNRTI) 3 (EC50 = 0.01681 µM), but its therapeutic efficacy was limited by its poor anti-resistance potency. This prompted us to search for potential HEPT analogs with broad-spectrum activities, leading to the generation of a series of novel HEPT analogs through exploring the chemical space of the solvent - protein interface. Encouraging improvements in anti-resistance efficacy were observed in some of these analogs, with the most promising compound 7 g being 3 to 26 - fold more potent than 3 against five mutant strains (E138K, Y181C, L100I, K103N, and Y188L). This analog surpassed the activity and selectivity of compound 3 by approximately 2-fold (EC50 = 0.007468 µM, SI = 4260). Furthermore, it was found to demonstrate feeble inhibition of CYP and hERG in vitro, and no in vivo acute toxicity. This study will further enrich the structure-activity relationships (SARs) of the HEPT scaffold, providing new guidance for the development of NNRTIs.


Subject(s)
HIV-1 , Space Flight , Structure-Activity Relationship , Reverse Transcriptase Inhibitors/pharmacology , Solvents
10.
Bioorg Chem ; 133: 106413, 2023 04.
Article in English | MEDLINE | ID: mdl-36791619

ABSTRACT

1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymines (HEPTs) have been previously described as an important class of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). In our continuously pursuing HEPT optimization efforts, a series of novel HEPTs, featuring -C(OH)CH2R, -CC, or -CHCH2R linker at the benzylic α-methylene unit, were developed as NNRTIs. Among these new HEPTs, the compound C20 with -CHCH3 group at the benzylic α-methylene unit conferred the highest potency toward WT HIV-1 and selectivity (EC50 = 0.23 µM, SI = 150.20), which was better than the lead compound HEPT (EC50 = 7 µM, SI = 106). Also, C20 was endowed with high efficacy against clinically relevant mutant strains (EC50(L100I) = 1.07 µM; EC50(K103N) = 4.33 µM; EC50(Y181C) = 5.57 µM; EC50(E138K) = 1.06 µM; EC50(F227L+V106A) = 5.45 µM) and wild-type HIV-1 reverse transcriptase (RT) with an IC50 value of 0.55 µM. Molecular docking and molecular dynamics simulations, as well as preliminary structure-activity relationship (SAR) analysis of these new compounds, provided a deeper insight into the key structural features of the interactions between HEPT analogs and HIV-1 RT and laid the foundation for further modification on HEPT scaffold.


Subject(s)
Anti-HIV Agents , Reverse Transcriptase Inhibitors , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , HIV Reverse Transcriptase , Molecular Docking Simulation , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Structure-Activity Relationship , Thymine
11.
Bioorg Chem ; 140: 106821, 2023 11.
Article in English | MEDLINE | ID: mdl-37659148

ABSTRACT

To enhance the anti-HIV-1 efficacy and solubility of our previously documented NNRTI 1, a collection of innovative quinoline-substituted DAPY derivatives were devised using heteroaromatic replacement strategy. The results of biological evaluation revealed that the representative compound 5h possessed the highest inhibitory activity against wild-type HIV-1 and selectivity index (EC50 = 0.0018 µM, SI > 166667), which were obviously better than that of 1 (EC50 = 0.00978 µM, SI > 37764), NVP (EC50 = 0.059 µM, SI > 158), EFV (EC50 = 0.028 µM, SI > 269), and ETR (EC50 = 0.0029 µM, SI > 1519). The water solubility of compound 5h was remarkably improved, surpassing that of 1, ETR and RPV. Additionally, this compound exerted significantly enhanced anti-resistance potency, compared to 1, and displayed comparable activity to ETR against WT RT of HIV-1 (IC50 = 0.011 µM). To elucidate the underlying molecular mechanisms, molecular docking studies were conducted to investigate the crucial interactions between 5h and WT/mutant strains of HIV-1. These findings provide valuable insights and drive further advancements in the development of DAPYs for HIV therapy.


Subject(s)
HIV-1 , Hydroxyquinolines , Quinolines , Solubility , Molecular Docking Simulation , Quinolines/pharmacology , Naphthalenes , Water
12.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674730

ABSTRACT

This study presents proof of concept for designing a novel HIV-1 covalent inhibitor targeting the highly conserved Tyr318 in the HIV-1 non-nucleoside reverse transcriptase inhibitors binding pocket to improve the drug resistance profiles. The target inhibitor ZA-2 with a fluorosulfate warhead in the structure was found to be a potent inhibitor (EC50 = 11-246 nM) against HIV-1 IIIB and a panel of NNRTIs-resistant strains, being far superior to those of NVP and EFV. Moreover, ZA-2 was demonstrated with lower cytotoxicity (CC50 = 125 µM). In the reverse transcriptase inhibitory assay, ZA-2 exhibited an IC50 value of 0.057 µM with the ELISA method, and the MALDI-TOF MS data demonstrated the covalent binding mode of ZA-2 with the enzyme. Additionally, the molecular simulations have also demonstrated that compounds can form covalent binding to the Tyr318.


Subject(s)
Anti-HIV Agents , HIV-1 , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , HIV-1/metabolism , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/metabolism , Drug Design , Structure-Activity Relationship
13.
Med Res Rev ; 42(2): 647-653, 2022 03.
Article in English | MEDLINE | ID: mdl-34636044

ABSTRACT

John Charles Martin should be remembered as a visionary medicinal chemist who was involved in the coinvention, development, or management of many FDA-approved antiviral drugs such as ganciclovir, stavudine, didanosine, cidofovir, oseltamivir, adefovir dipivoxil, tenofovir disoproxil fumarate, tenofovir alafenamide, sofosbuvir, and remdesivir.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Humans , Tenofovir
14.
J Med Virol ; 94(12): 5975-5986, 2022 12.
Article in English | MEDLINE | ID: mdl-35949003

ABSTRACT

Human immunodeficiency virus (HIV) capsid (CA) protein is a promising target for developing novel anti-HIV drugs. Starting from highly anticipated CA inhibitors PF-74, we used scaffold hopping strategy to design a series of novel 1,2,4-triazole phenylalanine derivatives by targeting an unexplored region composed of residues 106-109 in HIV-1 CA hexamer. Compound d19 displayed excellent antiretroviral potency against HIV-1 and HIV-2 strains with EC50 values of 0.59 and 2.69 µM, respectively. Additionally, we show via surface plasmon resonance (SPR) spectrometry that d19 preferentially interacts with the hexameric form of CA, with a significantly improved hexamer/monomer specificity ratio (ratio = 59) than PF-74 (ratio = 21). Moreover, we show via SPR that d19 competes with CPSF-6 for binding to CA hexamers with IC50 value of 33.4 nM. Like PF-74, d19 inhibits the replication of HIV-1 NL4.3 pseudo typed virus in both early and late stages. In addition, molecular docking and molecular dynamics simulations provide binding mode information of d19 to HIV-1 CA and rationale for improved affinity and potency over PF-74. Overall, the lead compound d19 displays a distinct chemotype form PF-74, improved CA affinity, and anti-HIV potency.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Anti-HIV Agents/therapeutic use , Capsid Proteins/metabolism , HIV Infections/drug therapy , HIV-1/chemistry , Humans , Molecular Docking Simulation , Phenylalanine/pharmacology , Phenylalanine/therapeutic use , Triazoles , Virus Replication
15.
Bioorg Med Chem ; 53: 116531, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34890994

ABSTRACT

To explore the chemical space around the entrance channel of the HIV-1 reverse transcriptase (RT) binding pocket, we innovatively designed and synthesized a series of novel indolylarylsulfones (IASs) bearing phenylboronic acid and phenylboronate ester functionalities at the indole-2-carboxamide as new HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) through structure-based drug design. All the newly synthesized compounds exhibited excellent to moderate potency against wild-type (WT) HIV-1 with EC50 values ranging from 6.7 to 42.6 nM. Among all, (3-ethylphenyl)boronic acid substituted indole-2-carboxamide and (4-ethylphenyl) boronate ester substituted indole-2-carboxamide were found to be the most potent inhibitors (EC50 = 8.5 nM, SI = 3310; EC50 = 6.7 nM, SI = 3549, respectively). Notably, (3-ethylphenyl)boronic acid substituted indole-2-carboxamide maintained excellent activities against the single HIV-1 mutants L100I (EC50 = 7.3 nM), K103N (EC50 = 9.2 nM), as well as the double mutant V106A/F227L (EC50 = 21.1 nM). Preliminary SARs and molecular modelling studies are also discussed in detail.


Subject(s)
Anti-HIV Agents/pharmacology , Boronic Acids/pharmacology , Esters/pharmacology , Indoles/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Sulfones/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Boronic Acids/chemistry , Dose-Response Relationship, Drug , Esters/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Indoles/chemistry , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Solubility , Structure-Activity Relationship , Sulfones/chemistry , Water/chemistry
16.
Bioorg Chem ; 126: 105880, 2022 09.
Article in English | MEDLINE | ID: mdl-35649315

ABSTRACT

The [(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) analogs were reported to be a kind of promising lead compounds as nonnucleoside HIV-1 reverse transcriptase inhibitors. In this work, a series of novel sulfinyl-substituted analogs were designed by structure-based design strategy with the purpose of improving the activity of HEPT, followed by evaluating their anti-HIV-1 activity in MT-4 cells. Most of the final compounds had moderate to strong activity against wild-type HIV-1 strain (IIIB) with EC50 values in the range of 0.21-1.91 µM, which were around 4 âˆ¼ 32-fold better than the reference compound HEPT. Some of them showed higher sensitivity toward clinically relevant mutant L100I and E138K viruses than NVP. Selected compounds were further evaluated for their activity against wild-type reverse transcriptase (RT), and most of them exhibited nanomolar activity, suggesting a good correlation with the cell-based activity. The compounds 11h, 11l, and 11ab displayed the best anti-HIV-1 activity against wild-type HIV-1 strain (EC50 = 0.280, 0.209, and 0.290 µM) and nanomolar activity against mutant strains (L100I and E138K), superior to HEPT and NVP. Molecular modeling studies were also performed to elucidate the biological activity, providing a structural insight for follow-up research on HEPT optimization.


Subject(s)
Anti-HIV Agents , HIV-1 , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , HIV Reverse Transcriptase , Models, Molecular , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship , Thymine/pharmacology
17.
Immun Ageing ; 19(1): 12, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248063

ABSTRACT

BACKGROUND: COVID-19 patients may experience "cytokine storm" when human immune system produces excessive cytokines/chemokines. However, it remains unclear whether early responses of inflammatory cytokines would lead to high or low titers of anti-SARS-CoV-2 antibodies. METHODS: This retrospective study enrolled a cohort of 272 hospitalized patients with laboratory-confirmed SARS-CoV-2. Laboratory assessments of serum cytokines (IL-2R, IL-6, IL-8, IL-10, TNF-α), anti-SARS-CoV-2 IgG/IgM antibodies, and peripheral blood biomarkers were conducted during hospitalization. RESULTS: At hospital admission, 36.4% patients were severely ill, 51.5% patients were ≥ 65 years, and 60.3% patients had comorbidities. Higher levels of IL-2R and IL-6 were observed in older patients (≥65 years). Significant differences of IL-2R (week 2 to week ≥5 from symptom onset), IL-6 (week 1 to week ≥5), IL-8 (week 2 to week ≥5), and IL-10 (week 1 to week 3) were observed between moderately-ill and severely ill patients. Anti-SARS-CoV-2 IgG titers were significantly higher in severely ill patients than in moderately ill patients, but such difference was not observed for IgM. High titers of early-stage IL-6, IL-8, and TNF-α (≤2 weeks after symptom onset) were positively correlated with high titers of late-stage IgG (≥5 weeks after symptom onset). Deaths were mostly observed in severely ill older patients (45.9%). Survival analyses revealed risk factors of patient age, baseline COVID-19 severity, and baseline IL-6 that affected survival time, especially in severely ill older patients. CONCLUSION: Early responses of elevated cytokines such as IL-6 reflect the active immune responses, leading to high titers of IgG antibodies against COVID-19.

18.
Chem Soc Rev ; 50(7): 4514-4540, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33595031

ABSTRACT

During the last forty years we have witnessed impressive advances in the field of antiviral drug discovery culminating with the introduction of therapies able to stop human immunodeficiency virus (HIV) replication, or cure hepatitis C virus infections in people suffering from liver disease. However, there are important viral diseases without effective treatments, and the emergence of drug resistance threatens the efficacy of successful therapies used today. In this review, we discuss strategies to discover antiviral compounds specifically designed to combat drug resistance. Currently, efforts in this field are focused on targeted proteins (e.g. multi-target drug design strategies), but also on drug conformation (either improving drug positioning in the binding pocket or introducing conformational constraints), in the introduction or exploitation of new binding sites, or in strengthening interaction forces through the introduction of multiple hydrogen bonds, covalent binding, halogen bonds, additional van der Waals forces or multivalent binding. Among the new developments, proteolysis targeting chimeras (PROTACs) have emerged as a valid approach taking advantage of intracellular mechanisms involving protein degradation by the ubiquitin-proteasome system. Finally, several molecules targeting host factors (e.g. human dihydroorotate dehydrogenase and DEAD-box polypeptide 3) have been identified as broad-spectrum antiviral compounds. Implementation of herein described medicinal chemistry strategies are expected to contribute to the discovery of new drugs effective against current and future threats due to emerging and re-emerging viral pandemics.


Subject(s)
Antiviral Agents/pharmacology , Chemistry, Pharmaceutical , Drug Discovery , Viruses/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Drug Resistance, Viral/drug effects , Microbial Sensitivity Tests
19.
Molecules ; 27(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500508

ABSTRACT

HIV-1 capsid (CA) performs multiple roles in the viral life cycle and is a promising target for antiviral development. In this work, we describe the design, synthesis, assessment of antiviral activity, and mechanistic investigation of 20 piperazinone phenylalanine derivatives with a terminal indole or benzene ring. Among them, F2-7f exhibited moderate anti-HIV-1 activity with an EC50 value of 5.89 µM, which was slightly weaker than the lead compound PF74 (EC50 = 0.75 µM). Interestingly, several compounds showed a preference for HIV-2 inhibitory activity, represented by 7f with an HIV-2 EC50 value of 4.52 µM and nearly 5-fold increased potency over anti-HIV-1 (EC50 = 21.81 µM), equivalent to PF74 (EC50 = 4.16 µM). Furthermore, F2-7f preferred to bind to the CA hexamer rather than to the monomer, similar to PF74, according to surface plasmon resonance results. Molecular dynamics simulation indicated that F2-7f and PF74 bound at the same site. Additionally, we computationally analyzed the ADMET properties for 7f and F2-7f. Based on this analysis, 7f and F2-7f were predicted to have improved drug-like properties and metabolic stability over PF74, and no toxicities were predicted based on the chemotype of 7f and F2-7f. Finally, the experimental metabolic stability results of F2-7f in human liver microsomes and human plasma moderately correlated with our computational prediction. Our findings show that F2-7f is a promising small molecule targeting the HIV-1 CA protein with considerable development potential.


Subject(s)
Anti-HIV Agents , HIV-1 , Humans , Benzene , Phenylalanine , HIV-1/metabolism , Capsid Proteins/metabolism
20.
Molecules ; 27(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144727

ABSTRACT

As a key structural protein, HIV capsid (CA) protein plays multiple roles in the HIV life cycle, and is considered a promising target for anti-HIV treatment. Based on the structural information of CA modulator PF-74 bound to HIV-1 CA hexamer, 18 novel phenylalanine derivatives were synthesized via the Ugi four-component reaction. In vitro anti-HIV activity assays showed that most compounds exhibited low-micromolar-inhibitory potency against HIV. Among them, compound I-19 exhibited the best anti-HIV-1 activity (EC50 = 2.53 ± 0.84 µM, CC50 = 107.61 ± 27.43 µM). In addition, I-14 displayed excellent HIV-2 inhibitory activity (EC50 = 2.30 ± 0.11 µM, CC50 > 189.32 µM) with relatively low cytotoxicity, being more potent than that of the approved drug nevirapine (EC50 > 15.02 µM, CC50 > 15.2 µM). Additionally, surface plasmon resonance (SPR) binding assays demonstrated direct binding to the HIV CA protein. Moreover, molecular docking and molecular dynamics simulations provided additional information on the binding mode of I-19 to HIV-1 CA. In summary, we further explored the structure­activity relationships (SARs) and selectivity of anti-HIV-1/HIV-2 of PF-74 derivatives, which is conducive to discovering efficient anti-HIV drugs.


Subject(s)
Anti-HIV Agents , HIV-1 , Peptidomimetics , Anti-HIV Agents/chemistry , Capsid , Capsid Proteins/metabolism , Drug Design , HIV-1/metabolism , Molecular Docking Simulation , Nevirapine , Peptidomimetics/pharmacology , Phenylalanine , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL