Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Med ; 29(11): 2814-2824, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857711

ABSTRACT

Tebotelimab, a bispecific PD-1×LAG-3 DART molecule that blocks both PD-1 and LAG-3, was investigated for clinical safety and activity in a phase 1 dose-escalation and cohort-expansion clinical trial in patients with solid tumors or hematologic malignancies and disease progression on previous treatment. Primary endpoints were safety and maximum tolerated dose of tebotelimab when administered as a single agent (n = 269) or in combination with the anti-HER2 antibody margetuximab (n = 84). Secondary endpoints included anti-tumor activity. In patients with advanced cancer treated with tebotelimab monotherapy, 68% (184/269) experienced treatment-related adverse events (TRAEs; 22% were grade ≥3). No maximum tolerated dose was defined; the recommended phase 2 dose (RP2D) was 600 mg once every 2 weeks. There were tumor decreases in 34% (59/172) of response-evaluable patients in the dose-escalation cohorts, with objective responses in multiple solid tumor types, including PD-1-refractory disease, and in LAG-3+ non-Hodgkin lymphomas, including CAR-T refractory disease. To enhance potential anti-tumor responses, we tested margetuximab plus tebotelimab. In patients with HER2+ tumors treated with tebotelimab plus margetuximab, 74% (62/84) had TRAEs (17% were grade ≥3). The RP2D was 600 mg once every 3 weeks. The confirmed objective response rate in these patients was 19% (14/72), including responses in patients typically not responsive to anti-HER2/anti-PD-1 combination therapy. ClinicalTrials.gov identifier: NCT03219268 .


Subject(s)
Hematologic Neoplasms , Immunoconjugates , Neoplasms , Humans , Programmed Cell Death 1 Receptor/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Neoplasms/pathology , Hematologic Neoplasms/drug therapy
2.
Cell Rep Med ; 1(9): 100163, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33377134

ABSTRACT

Combination immunotherapy with antibodies directed against PD-1 and CTLA-4 shows improved clinical benefit across cancer indications compared to single agents, albeit with increased toxicity. Leveraging the observation that PD-1 and CTLA-4 are co-expressed by tumor-infiltrating lymphocytes, an investigational PD-1 x CTLA-4 bispecific DART molecule, MGD019, is engineered to maximize checkpoint blockade in the tumor microenvironment via enhanced CTLA-4 blockade in a PD-1-binding-dependent manner. In vitro, MGD019 mediates the combinatorial blockade of PD-1 and CTLA-4, confirming dual inhibition via a single molecule. MGD019 is well tolerated in non-human primates, with evidence of both PD-1 and CTLA-4 blockade, including increases in Ki67+CD8 and ICOS+CD4 T cells, respectively. In the ongoing MGD019 first-in-human study enrolling patients with advanced solid tumors (NCT03761017), an analysis undertaken following the dose escalation phase revealed acceptable safety, pharmacodynamic evidence of combinatorial blockade, and objective responses in multiple tumor types typically unresponsive to checkpoint inhibitor therapy.


Subject(s)
Antibodies/therapeutic use , CTLA-4 Antigen/immunology , Immunotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/drug effects , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
3.
Mol Cancer Ther ; 19(11): 2235-2244, 2020 11.
Article in English | MEDLINE | ID: mdl-32967924

ABSTRACT

B7-H3, also referred to as CD276, is a member of the B7 family of immune regulatory proteins. B7-H3 is overexpressed on many solid cancers, including prostate cancer, renal cell carcinoma, melanoma, squamous cell carcinoma of the head and neck, non-small cell lung cancer, and breast cancer. Overexpression of B7-H3 is associated with disease severity, risk of recurrence and reduced survival. In this article, we report the preclinical development of MGC018, an antibody-drug conjugate targeted against B7-H3. MGC018 is comprised of the cleavable linker-duocarmycin payload, valine-citrulline-seco duocarmycin hydroxybenzamide azaindole (vc-seco-DUBA), conjugated to an anti-B7-H3 humanized IgG1/kappa mAb through reduced interchain disulfides, with an average drug-to-antibody ratio of approximately 2.7. MGC018 exhibited cytotoxicity toward B7-H3-positive human tumor cell lines, and exhibited bystander killing of target-negative tumor cells when cocultured with B7-H3-positive tumor cells. MGC018 displayed potent antitumor activity in preclinical tumor models of breast, ovarian, and lung cancer, as well as melanoma. In addition, antitumor activity was observed toward patient-derived xenograft models of breast, prostate, and head and neck cancer displaying heterogeneous expression of B7-H3. Importantly, MGC018 exhibited a favorable pharmacokinetic and safety profile in cynomolgus monkeys following repeat-dose administration. The antitumor activity observed preclinically with MGC018, together with the positive safety profile, provides evidence of a potentially favorable therapeutic index and supports the continued development of MGC018 for the treatment of solid cancers. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/19/11/2235/F1.large.jpg.


Subject(s)
B7 Antigens/antagonists & inhibitors , Drug Evaluation, Preclinical , Immune Checkpoint Inhibitors/pharmacology , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Animals , B7 Antigens/genetics , B7 Antigens/metabolism , Bystander Effect , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Monitoring , Gene Knockdown Techniques , Humans , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/isolation & purification , Immunoconjugates/chemistry , Immunoconjugates/isolation & purification , Mice , Neoplasms/metabolism , Neoplasms/pathology , Treatment Outcome , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 13(12): 3713-23, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17575237

ABSTRACT

PURPOSE: Agents inhibiting the epidermal growth factor receptor (EGFR) have shown clinical benefit in a subset of non-small cell lung cancer patients expressing amplified or mutationally activated EGFR. However, responsive patients can relapse as a result of selection for EGFR gene mutations that confer resistance to ATP competitive EGFR inhibitors, such as erlotinib and gefitinib. We describe here the activity of EXEL-7647 (XL647), a novel spectrum-selective kinase inhibitor with potent activity against the EGF and vascular endothelial growth factor receptor tyrosine kinase families, against both wild-type (WT) and mutant EGFR in vitro and in vivo. EXPERIMENTAL DESIGN: The activity of EGFR inhibitors against WT and mutant EGFRs and their effect on downstream signal transduction was examined in cellular assays and in vivo using A431 and MDA-MB-231 (WT EGFR) and H1975 (L858R and T790M mutant EGFR) xenograft tumors. RESULTS: EXEL-7647 shows potent and long-lived inhibition of the WT EGFR in vivo. In addition, EXEL-7647 inhibits cellular proliferation and EGFR pathway activation in the erlotinib-resistant H1975 cell line that harbors a double mutation (L858R and T790M) in the EGFR gene. In vivo efficacy studies show that EXEL-7647 substantially inhibited the growth of H1975 xenograft tumors and reduced both tumor EGFR signaling and tumor vessel density. Additionally, EXEL-7647, in contrast to erlotinib, substantially inhibited the growth and vascularization of MDA-MB-231 xenografts, a model which is more reliant on signaling through vascular endothelial growth factor receptors. CONCLUSIONS: These studies provide a preclinical basis for clinical trials of XL647 in solid tumors and in patients bearing tumors that are resistant to existing EGFR-targeted therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Azabicyclo Compounds/pharmacology , ErbB Receptors/drug effects , ErbB Receptors/genetics , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , Erlotinib Hydrochloride , Female , Gefitinib , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Nude , Mice, SCID , Mutation , Phosphorylation/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL