Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Antimicrob Chemother ; 79(7): 1657-1667, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38775752

ABSTRACT

OBJECTIVES: To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19. METHODS: WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments. RESULTS: mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids. CONCLUSIONS: Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Resistance, Bacterial , Escherichia coli , Meat , Microbial Sensitivity Tests , Salmonella , Animals , Azithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Drug Resistance, Bacterial/genetics , Europe , Meat/microbiology , Plasmids/genetics , Whole Genome Sequencing , Genotype , Escherichia coli Infections/microbiology , Swine , Macrolides/pharmacology , Epidemiological Monitoring , Genes, Bacterial
2.
Euro Surveill ; 23(6)2018 02.
Article in English | MEDLINE | ID: mdl-29439754

ABSTRACT

Background and aimPlasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Escherichia coli Proteins/genetics , Plasmids/genetics , Salmonella/drug effects , Salmonella/genetics , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Escherichia coli Proteins/metabolism , Humans , Membrane Proteins , Microbial Sensitivity Tests , Multiplex Polymerase Chain Reaction , Plasmids/metabolism , Salmonella/isolation & purification , Transferases (Other Substituted Phosphate Groups)
3.
J Antimicrob Chemother ; 66(6): 1278-86, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21393198

ABSTRACT

OBJECTIVES: This study was initiated to collect retrospective information on the occurrence of plasmid-mediated quinolone resistance (PMQR) in Salmonella enterica and Escherichia coli isolates in Europe and to identify the responsible genes. METHODS: Databases of national reference laboratories containing MIC values for Salmonella and E. coli isolated between 1994 and 2009 in animals, humans, food and the environment from 13 European countries were screened for isolates exhibiting a defined quinolone resistance phenotype, i.e. reduced susceptibility to fluoroquinolones and nalidixic acid. PCR and sequence analysis were performed to identify the responsible PMQR genes. RESULTS: Screening of databases of 13 European countries resulted in a selection of 1215 Salmonella and 333 E. coli isolates. PMQR genes were identified in 59% of the Salmonella isolates and 15% of the E. coli isolates selected. In Salmonella, qnrS1 (n = 125) and variants of qnrB (n = 138) were frequently identified, whereas qnrA1 (n = 3) and aac(6')-1b-cr (n = 3) were rarely found. qnrD was detected in 22 Salmonella isolates obtained from humans and animals. In E. coli, qnrS1 was identified in 19 isolates and qnrB19 was found in one isolate. No qnrC or qepA genes were detected in either Salmonella or E. coli. CONCLUSIONS: This study shows the occurrence and dissemination of PMQR genes in Salmonella and E. coli in Europe with a defined quinolone resistance phenotype. We also report the first detection of qnrD in Salmonella collected in Europe.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Escherichia coli/drug effects , Escherichia coli/genetics , Quinolones/pharmacology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Environmental Microbiology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Europe , Food Microbiology , Genes, Bacterial , Humans , Microbial Sensitivity Tests , Molecular Epidemiology , Plasmids , Polymerase Chain Reaction , Retrospective Studies , Salmonella Infections/microbiology , Salmonella Infections, Animal/microbiology , Salmonella enterica/isolation & purification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL