Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Antimicrob Agents Chemother ; 66(12): e0093122, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36346229

ABSTRACT

Islatravir (MK-8591) is a high-potency reverse transcriptase translocation inhibitor in development for the treatment of HIV-1 infection. Data from preclinical and clinical studies suggest that ~30% to 60% of islatravir is excreted renally and that islatravir is not a substrate of renal transporters. To assess the impact of renal impairment on the pharmacokinetics of islatravir, an open-label phase 1 trial was conducted with individuals with severe renal insufficiency (RI). A single dose of islatravir 60 mg was administered orally to individuals with severe RI (estimated glomerular filtration rate [eGFR] <30 mL/min/1.73 m2) and to healthy individuals without renal impairment (matched control group; eGFR ≥90 mL/min/1.73 m2). Safety and tolerability were assessed, and blood samples were collected to measure the pharmacokinetics of islatravir and its major metabolite 4'-ethynyl-2-fluoro-2'deoxyinosine (M4) in plasma, as well as active islatravir-triphosphate (TP) in peripheral blood mononuclear cells (PBMCs). Plasma islatravir and M4 area under the concentration-time curve from zero to infinity (AUC0-∞) were ~2-fold and ~5-fold higher, respectively, in participants with severe RI relative to controls, whereas islatravir-TP AUC0-∞ was ~1.5-fold higher in the RI group than in the control group. The half-lives of islatravir in plasma and islatravir-TP in PBMCs were longer in participants with severe RI than in controls. These findings are consistent with renal excretion playing a major role in islatravir elimination. A single oral dose of islatravir 60 mg was generally well tolerated. These data provide guidance regarding administration of islatravir in individuals with impaired renal function. (This study has been registered at ClinicalTrials.gov under registration no. NCT04303156.).


Subject(s)
Leukocytes, Mononuclear , Renal Insufficiency , Humans , Area Under Curve , Deoxyadenosines , Kidney/metabolism , Leukocytes, Mononuclear/metabolism , Renal Insufficiency/metabolism , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/metabolism
2.
Article in English | MEDLINE | ID: mdl-30745392

ABSTRACT

The combination of the hepatitis C virus (HCV) nonstructural protein 5A (NS5A) inhibitor elbasvir and the NS3/4A protease inhibitor grazoprevir is a potent, once-daily therapy indicated for the treatment of chronic HCV infection in individuals coinfected with human immunodeficiency virus (HIV). We explored the pharmacokinetic interactions of elbasvir and grazoprevir with ritonavir and ritonavir-boosted HIV protease inhibitors in three phase 1 trials. Drug-drug interaction trials with healthy participants were conducted to evaluate the effect of ritonavir on the pharmacokinetics of grazoprevir (n = 10) and the potential two-way pharmacokinetic interactions of elbasvir (n = 30) or grazoprevir (n = 39) when coadministered with ritonavir-boosted atazanavir, lopinavir, or darunavir. Coadministration of ritonavir with grazoprevir increased grazoprevir exposure; the geometric mean ratio (GMR) for grazoprevir plus ritonavir versus grazoprevir alone area under the concentration-time curve from 0 to 24 h (AUC0-24) was 1.91 (90% confidence interval [CI]; 1.31 to 2.79). Grazoprevir exposure was markedly increased with coadministration of atazanavir-ritonavir, lopinavir-ritonavir, and darunavir-ritonavir, with GMRs for grazoprevir AUC0-24 of 10.58 (90% CI, 7.78 to 14.39), 12.86 (90% CI, 10.25 to 16.13), and 7.50 (90% CI, 5.92 to 9.51), respectively. Elbasvir exposure was increased with coadministration of atazanavir-ritonavir, lopinavir-ritonavir, and darunavir-ritonavir, with GMRs for elbasvir AUC0-24 of 4.76 (90% CI, 4.07 to 5.56), 3.71 (90% CI, 3.05 to 4.53), and 1.66 (90% CI, 1.35 to 2.05), respectively. Grazoprevir and elbasvir had little effect on atazanavir, lopinavir, and darunavir pharmacokinetics. Coadministration of elbasvir-grazoprevir with atazanavir-ritonavir, lopinavir-ritonavir, or darunavir-ritonavir is contraindicated, owing to an increase in grazoprevir exposure. Therefore, HIV treatment regimens without HIV protease inhibitors should be considered for HCV/HIV-coinfected individuals who are being treated with elbasvir-grazoprevir.


Subject(s)
Antiviral Agents/pharmacokinetics , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacokinetics , Hepatitis C/drug therapy , Adult , Amides , Antiviral Agents/pharmacology , Atazanavir Sulfate/pharmacokinetics , Atazanavir Sulfate/pharmacology , Benzofurans/pharmacokinetics , Benzofurans/pharmacology , Carbamates , Cyclopropanes , Darunavir/pharmacokinetics , Darunavir/pharmacology , Drug Interactions , Female , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Healthy Volunteers , Hepacivirus/drug effects , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lopinavir/pharmacokinetics , Lopinavir/pharmacology , Male , Middle Aged , Quinoxalines/pharmacokinetics , Quinoxalines/pharmacology , Ritonavir/pharmacokinetics , Ritonavir/pharmacology , Sulfonamides , Viral Nonstructural Proteins/antagonists & inhibitors , Young Adult
3.
Clin Exp Allergy ; 49(12): 1587-1597, 2019 12.
Article in English | MEDLINE | ID: mdl-31400236

ABSTRACT

BACKGROUND: The temporal in vivo response of epithelial cells to a viral challenge and its association with viral clearance and clinical outcomes has been largely unexplored in asthma. OBJECTIVE: To determine gene expression profiles over time in nasal epithelial cells (NECs) challenged in vivo with rhinovirus-16 (RV16) and compare to nasal symptoms and viral clearance. METHODS: Patients with stable mild to moderate asthma (n = 20) were challenged intranasally with RV16. Nasal brush samples for RNA sequencing were taken 7 days prior to infection and 3, 6 and 14 days post-infection, and blood samples 4 days prior to infection and day 6 post-infection. Viral load was measured in nasal lavage fluid at day 3, 6 and 14. RESULTS: Top differentially (>2.5-fold increase) expressed gene sets in NECs post-RV16 at days 3 and 6, compared with baseline, were interferon alpha and gamma response genes. Patients clearing the virus within 6 days (early resolvers) had a significantly increased interferon response at day 6, whereas those having cleared the virus by day 14 (late resolvers) had significantly increased responses at day 3, 6 and 14. Interestingly, patients not having cleared the virus by day 14 (non-resolvers) had no enhanced interferon responses at any of these days. The daily Cold Symptom Scores (CSS) peaked at days 3 to 5 and correlated positively with interferon response genes at day 3 (R = 0.48), but not at other time-points. Interferon response genes were also enhanced in blood at day 6 after RV16 challenge. CONCLUSION AND CLINICAL RELEVANCE: This study shows that viral load and clearance varies markedly over time in mild to moderate asthma patients exposed to a fixed RV16 dose. The host's nasal interferon response to RV16 at day 3 is associated with upper respiratory tract symptoms. The temporal interferon response in nasal epithelium associates with viral clearance in the nasal compartment.


Subject(s)
Asthma , Bronchi , Interferon-alpha/immunology , Interferon-gamma/immunology , Nasal Mucosa , Picornaviridae Infections , Rhinovirus/immunology , Adult , Asthma/immunology , Asthma/pathology , Asthma/virology , Bronchi/immunology , Bronchi/pathology , Bronchi/virology , Female , Humans , Male , Middle Aged , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Nasal Mucosa/virology , Picornaviridae Infections/immunology , Picornaviridae Infections/pathology
4.
Synapse ; 69(1): 33-40, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25196464

ABSTRACT

Decreased glutamatergic neurotransmission is hypothesized to be involved in the pathophysiology of schizophrenia. Inhibition of glycine transporter Type-1 (GlyT1) reuptake is expected to increase the glutamatergic neurotransmission and may serve as treatment for cognitive and negative symptoms of schizophrenia. In this article, we present human data from a novel GlyT1 PET tracer, [(18) F]MK-6577. In the process of developing a GlyT1 inhibitor therapeutic, a PET tracer can assist in determining the dose with a high probability of sufficiently testing the mechanism of action. This article reports the human PET studies with [(18) F]MK-6577 for measuring GlyT1 receptor availability at baseline in normal human subjects and occupancy with a GlyT1 inhibitor, MK-2637. Studies were also performed to measure radiation burden and the baseline test-retest (T-RT) variability of the tracer. The effective dose from sequential whole-body dosimetry scans in three male subjects was estimated to be 24.5 ± 2.9 µSV/MBq (mean ± SD). The time-activity curves from T-RT scans modeled satisfactorily using a two tissue compartmental model. The tracer uptake was highest in the pons (VT = 6.7 ± 0.9, BPND = 4.1 ± 0.43) and lowest in the cortex (VT = 2.1 ± 0.5, BPND = 0.60 ± 0.23). VT T-RT variability measured in three subjects was <12% on average. The occupancy scans performed in a cohort of 15 subjects indicated absence of a reference region. The in vivo potency (Occ50 ) of MK-2637 was determined using two methods: A: Lassen plot with a population input function (Occ50 = 106 nM, SE = 20 nM) and B: pseudo reference tissue model using cortex as the pseudo reference region (Occ50 = 141 nM, SE = 21 nM).


Subject(s)
Benzamides , Brain/diagnostic imaging , Brain/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Sulfonamides , Adult , Benzamides/pharmacokinetics , Brain/drug effects , Brain Mapping , Cohort Studies , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Humans , Kinetics , Male , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sulfonamides/pharmacokinetics , Young Adult
5.
Br J Clin Pharmacol ; 79(5): 831-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25377933

ABSTRACT

AIMS: Calcitonin gene related peptide (CGRP) receptor antagonists are effective acute migraine treatments. A capsaicin-induced dermal vasodilatation (CIDV) model has been developed to provide target-engagement information in healthy volunteers. In the model, CGRP release is provoked after dermal capsaicin application, by activating transient receptor potential vanilloid-type-1 (TRPV1) receptors at peripheral sensory nerves. Laser Doppler imaging is used to quantify CIDV and subsequent inhibition by CGRP receptor antagonists. We sought to evaluate a CGRP receptor antagonist, MK-3207, in the biomarker model and to assess the predictability of the CIDV response to migraine clinical efficacy. METHODS: An integrated population pharmacokinetic/pharmacodynamic (PK/PD) model was developed to describe the exposure-response relationship for CIDV inhibition by CGRP and TRPV1 receptor antagonists. MK-3207 dose-response predictions were made based on estimated potency from the PK/PD model and mean plasma concentrations observed at the doses investigated. RESULTS: The results suggested that a 20 mg dose of MK-3207 (EC50 of 1.59 nm) would be required to attain the peripheral CIDV response at a target level that was shown previously to correlate with 2 h clinical efficacy based on phase 3 telcagepant clinical data, and that a plateau of the dose-response would be reached around 40-100 mg. These predictions provided a quantitative rationale for dose selection in a phase 2 clinical trial of MK-3207 and helped with interpretation of the efficacy results from the trial. CONCLUSIONS: The integrated CIDV PK/PD model provides a useful platform for characterization of PK/PD relationships and predictions of dose-response relationships to aid in future development of CGRP and TRPV1 receptor antagonists.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Calcitonin Gene-Related Peptide Receptor Antagonists , Capsaicin/pharmacology , Models, Biological , Skin/blood supply , Spiro Compounds , Vasodilation/drug effects , Administration, Oral , Adolescent , Adult , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Healthy Volunteers , Humans , Male , Predictive Value of Tests , Spiro Compounds/administration & dosage , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Young Adult
6.
Cell Metab ; 7(1): 68-78, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18177726

ABSTRACT

Cannabinoid 1 receptor (CB1R) inverse agonists are emerging as a potential obesity therapy. However, the physiological mechanisms by which these agents modulate human energy balance are incompletely elucidated. Here, we describe a comprehensive clinical research study of taranabant, a structurally novel acyclic CB1R inverse agonist. Positron emission tomography imaging using the selective CB1R tracer [(18)F]MK-9470 confirmed central nervous system receptor occupancy levels ( approximately 10%-40%) associated with energy balance/weight-loss effects in animals. In a 12-week weight-loss study, taranabant induced statistically significant weight loss compared to placebo in obese subjects over the entire range of evaluated doses (0.5, 2, 4, and 6 mg once per day) (p < 0.001). Taranabant treatment was associated with dose-related increased incidence of clinical adverse events, including mild to moderate gastrointestinal and psychiatric effects. Mechanism-of-action studies suggest that engagement of the CB1R by taranabant leads to weight loss by reducing food intake and increasing energy expenditure and fat oxidation.


Subject(s)
Amides/pharmacology , Energy Intake/drug effects , Energy Metabolism/drug effects , Pyridines/pharmacology , Receptor, Cannabinoid, CB1/agonists , Weight Loss/drug effects , Adult , Aged , Amides/therapeutic use , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Double-Blind Method , Fats/metabolism , Humans , Middle Aged , Positron-Emission Tomography , Pyridines/therapeutic use
7.
Neuroimage ; 68: 1-10, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23238431

ABSTRACT

Antagonism of the central opioid receptor like-1 receptor (ORL1) has been implicated in cognition, and has been a focus of drug discovery efforts to ameliorate the cognitive deficits that remain during the stable treatment of schizophrenia with current antipsychotics. In order to facilitate dose selection for phase II clinical testing an ORL1-specific PET tracer was developed to determine drug plasma concentration versus occupancy relationships in order to ensure that the doses selected and the degree of target engagement were sufficient to ensure adequate proof of concept testing. MK-0911 is a selective, high affinity antagonist for the ORL1 receptor radiolabeled with high specific activity (18)F for positron emission tomography (PET) studies. Evaluation of [(18)F]MK-0911 in rhesus monkey PET studies showed a pattern of brain uptake which was consistent with the known distribution of ORL1. In vitro autoradiography with [(18)F]MK-0911 in rhesus monkey and human brain tissue slices showed a regional distribution that was consistent with in vivo imaging results in monkey. Pre-treatment of rhesus monkeys with high doses of structurally diverse ORL1 antagonists MK-0584, MK-0337, or MK-5757 achieved blockade of [(18)F]MK-0911 in all gray matter regions. Baseline PET studies with [(18)F]MK-0911 in healthy human subjects showed tracer distribution and kinetics similar to that observed in rhesus monkey. Quantification of [(18)F]MK-0911 uptake in repeat human baseline PET studies showed a test-retest variability in volume of distribution (V(T)) averaging 3% across brain regions. Humans dosed orally with MK-5757 showed reduced [(18)F]MK-0911 tracer concentration in brain proportional with MK-5757 dose and plasma level. [(18)F]MK-0911 was useful for determining MK-5757-induced receptor occupancy of ORL1 to guide MK-5757 dose-selection for clinical proof-of-concept studies. Additionally, [(18)F]MK-0911 may be a useful tool for studying the pharmacology of ORL1 in various human populations and disease states.


Subject(s)
Benzimidazoles/pharmacokinetics , Brain/diagnostic imaging , Fluorine Radioisotopes/pharmacokinetics , Piperidines/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Receptors, Opioid/metabolism , Adult , Animals , Benzimidazoles/chemistry , Brain/metabolism , Fluorine Radioisotopes/chemistry , Humans , Macaca mulatta , Male , Middle Aged , Piperidines/chemistry , Radiopharmaceuticals/chemistry , Tissue Distribution , Young Adult , Nociceptin Receptor
8.
J Pharmacol Exp Ther ; 347(2): 478-86, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23975906

ABSTRACT

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide whose agonist interaction with the CGRP receptor (CGRP-R) in the periphery promotes vasodilation, neurogenic inflammation and trigeminovascular sensory activation. This process is implicated in the cause of migraine headaches, and CGRP-R antagonists in clinical development have proven effective in treating migraine-related pain in humans. CGRP-R is expressed on blood vessel smooth muscle and sensory trigeminal neurons and fibers in the periphery as well as in the central nervous system. However, it is not clear what role the inhibition of central CGRP-R plays in migraine pain relief. To this end, the CGRP-R positron emission tomography (PET) tracer [(11)C]MK-4232 (2-[(8R)-8-(3,5-difluorophenyl)-6,8-[6-(11)C]dimethyl-10-oxo-6,9-diazaspiro[4.5]decan-9-yl]-N-[(2R)-2'-oxospiro[1,3-dihydroindene-2,3'-1H-pyrrolo[2,3-b]pyridine]-5-yl]acetamide) was discovered and developed for use in clinical PET studies. In rhesus monkeys and humans, [(11)C]MK-4232 displayed rapid brain uptake and a regional brain distribution consistent with the known distribution of CGRP-R. Monkey PET studies with [(11)C]MK-4232 after intravenous dosing with CGRP-R antagonists validated the ability of [(11)C]MK-4232 to detect changes in CGRP-R occupancy in proportion to drug plasma concentration. Application of [(11)C]MK-4232 in human PET studies revealed that telcagepant achieved only low receptor occupancy at an efficacious dose (140 mg PO). Therefore, it is unlikely that antagonism of central CGRP-R is required for migraine efficacy. However, it is not known whether high central CGRP-R antagonism may provide additional therapeutic benefit.


Subject(s)
Acetanilides/pharmacokinetics , Analgesics/pharmacokinetics , Azepines/pharmacokinetics , Brain/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists , Imidazoles/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Spiro Compounds/pharmacokinetics , Acetanilides/chemistry , Adult , Analgesics/therapeutic use , Animals , Azepines/therapeutic use , Brain/diagnostic imaging , Carbon Radioisotopes , Female , Humans , Imidazoles/therapeutic use , Macaca mulatta , Male , Middle Aged , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Molecular Structure , Protein Binding , Radiopharmaceuticals/chemistry , Species Specificity , Spiro Compounds/chemistry , Tissue Distribution , Young Adult
9.
Platelets ; 23(4): 249-58, 2012.
Article in English | MEDLINE | ID: mdl-21919555

ABSTRACT

Traditional assays of the coagulation status of patients, bleeding time assessment (BT) and light transmission aggregometry (LTA), are useful in clinical drug development. However, these assays are both labor intensive and expensive. BT results can be operator dependent and by its nature can inhibit subject enrollment in a clinical trial. The preparation of platelet-rich plasma necessary for LTA requires specialized training and laboratory support. Alternatives to these methods are desirable. The goal of this study was identification of a quantitative, easy-to-use, point-of-care device with minimal technical variables that could facilitate assessment of platelet aggregation in clinical drug development. This was a double-blind, placebo-controlled, randomized, three-period cross-over study in healthy volunteers designed to compare the abilities of BT, LTA, and three point-of-care devices, Multiplate®, Platelet Function Analyzer-100®, and VerifyNow® to quantitate the effects on platelet function of 3 days of treatment with aspirin, clopidogrel, or placebo. The effect size (difference in treatment means divided by the pooled standard deviations [SD]) of the three point-of-care devices was greater than or similar to BT and LTA for all treatment comparisons examined. VerifyNow® had the highest effect size comparing ASA to placebo. Multiplate® had the highest effect size comparing clopidogrel to placebo. From this study, we conclude that any one of the three simple-to-use point-of-care devices can reliably assess the treatment effect of ASA and CLP on platelet function in comparison with BT or LTA at the study population level


Subject(s)
Aspirin/administration & dosage , Bleeding Time , Platelet Aggregation Inhibitors/administration & dosage , Platelet Function Tests , Point-of-Care Systems , Ticlopidine/analogs & derivatives , Adult , Aryl Hydrocarbon Hydroxylases/genetics , Clopidogrel , Cross-Over Studies , Cytochrome P-450 CYP2C19 , Female , Genotype , Humans , Male , Middle Aged , Platelet Aggregation/drug effects , Ticlopidine/administration & dosage , Young Adult
10.
J Acquir Immune Defic Syndr ; 89(2): 191-198, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34654041

ABSTRACT

BACKGROUND: MK-8507 is a novel HIV-1 non-nucleoside reverse transcriptase inhibitor being developed for treatment of HIV-1 infection. MK-8507 has high antiviral potency in vitro and pharmacokinetic (PK) properties that support once-weekly dosing. SETTING: A phase 1, open-label, proof-of-concept study was conducted in treatment-naive adults with HIV-1 infection to assess monotherapy antiviral activity. METHODS: In 3 sequential panels, participants aged 18-60 years with baseline plasma HIV-1 RNA ≥10,000 copies/mL and CD4+ T-cell count >200/mm3 received a single oral dose of 40, 80, or 600 mg MK-8507 in the fasted state. Participants were assessed for HIV-1 RNA for at least 7 days, PKs for 14 days, and safety and tolerability for 21 days postdose. RESULTS: A total of 18 participants were enrolled (6 per panel). The mean 7-day postdose HIV-1 RNA reduction ranged from ∼1.2 to ∼1.5 log10 copies/mL across the doses assessed. One patient had a viral rebound associated with emergence of an F227C reverse transcriptase variant (per chain-termination method sequencing) 14 days postdose; this variant was found in a second participant by ultra-deep sequencing as an emerging minority variant. MK-8507 PKs were generally dose-proportional and similar to observations in participants without HIV-1 infection in prior studies; mean MK-8507 half life was 56-69 hours in this study. MK-8507 was generally well tolerated at all doses. CONCLUSIONS: The robust antiviral activity, PK, and tolerability of MK-8507 support its continued development as part of a complete once weekly oral regimen for HIV-1 treatment; combination therapy could mitigate the emergence of resistance-associated variants.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Adolescent , Adult , CD4 Lymphocyte Count , HIV Infections/drug therapy , HIV-1/genetics , Humans , Middle Aged , RNA , RNA, Viral , Reverse Transcriptase Inhibitors/adverse effects , Viral Load , Young Adult
11.
Sci Transl Med ; 14(627): eabg3684, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35020407

ABSTRACT

Positron emission tomography (PET) ligands play an important role in the development of therapeutics by serving as target engagement or pharmacodynamic biomarkers. Here, we describe the discovery and translation of the PET tracer [11C]MK-6884 from rhesus monkeys to patients with Alzheimer's disease (AD). [3H]MK-6884/[11C]MK-6884 binds with high binding affinity and good selectivity to an allosteric site on M4 muscarinic cholinergic receptors (M4Rs) in vitro and shows a regional distribution in the brain consistent with M4R localization in vivo. The tracer demonstrates target engagement of positive allosteric modulators of the M4R (M4 PAMs) through competitive binding interactions. [11C]MK-6884 binding is enhanced in vitro by the orthosteric M4R agonist carbachol and indirectly in vivo by the acetylcholinesterase inhibitor donepezil in rhesus monkeys and healthy volunteers, consistent with its pharmacology as a highly cooperative M4 PAM. PET imaging of [11C]MK-6884 in patients with AD identified substantial regional differences quantified as nondisplaceable binding potential (BPND) of [11C]MK-6884. These results suggest that [11C]MK-6884 is a useful target engagement biomarker for M4 PAMs but may also act as a sensitive probe of neuropathological changes in the brains of patients with AD.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Alzheimer Disease/diagnostic imaging , Animals , Humans , Macaca mulatta , Positron-Emission Tomography/methods , Receptors, Muscarinic
12.
Br J Clin Pharmacol ; 71(5): 708-17, 2011 May.
Article in English | MEDLINE | ID: mdl-21480950

ABSTRACT

AIMS: To assess the effect of the calcitonin gene-related peptide (CGRP) receptor antagonist, telcagepant, on the haemodynamic response to sublingual nitroglycerin (NTG). METHODS: Twenty-two healthy male volunteers participated in a randomized, placebo-controlled, double-blind, two-period, crossover study. Subjects received 500 mg telcagepant or placebo followed, 1.5 h later, by 0.4 mg NTG. To assess the haemodynamic response the following vascular parameters were measured: blood pressure, aortic augmentation index (AIx) and brachial artery diameter (BAD). Data are presented as mean (95% confidence interval, CI). RESULTS: The aortic AIx following NTG decreased by -18.50 (-21.02, -15.98) % after telcagepant vs. -17.28 (-19.80, -14.76) % after placebo. The BAD fold increase following NTG was 1.14 (1.12, 1.17) after telcagepant vs. 1.13 (1.10, 1.15) after placebo. For both AIx and BAD, the hypothesis that telcagepant does not significantly affect the changes induced by NTG is supported (P < 0.0001). In addition, no vasoconstrictor effect of telcagepant could be demonstrated. CONCLUSIONS: Telcagepant did not affect NTG-induced haemodynamic changes. These data suggest that NTG-induced vasodilation is not CGRP dependent.


Subject(s)
Azepines/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists , Imidazoles/pharmacology , Nitroglycerin/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Adult , Aorta/drug effects , Aorta/physiology , Blood Pressure/drug effects , Brachial Artery/drug effects , Brachial Artery/physiology , Cross-Over Studies , Double-Blind Method , Drug Interactions , Heart Rate/drug effects , Humans , Male , Middle Aged , Vasodilation/physiology , Young Adult
13.
Platelets ; 22(7): 495-503, 2011.
Article in English | MEDLINE | ID: mdl-21526889

ABSTRACT

Laropiprant (LRPT) is being developed in combination with Merck's extended-release niacin (ERN) formulation for the treatment of dyslipidemia. LRPT, an antagonist of the prostaglandin PGD2 receptor DP1, reduces flushing symptoms associated with ERN. LRPT also has affinity for the thromboxane A2 receptor TP (approximately 190-fold less potent at TP compared with DP1). Aspirin and clopidogrel are two frequently used anti-clotting agents with different mechanisms of action. Since LRPT may potentially be co-administered with either one of these agents, these studies were conducted to assess the effects of steady-state LRPT on the antiplatelet activity of steady-state clopidogrel or aspirin. Bleeding time at 24 h post-dose (trough) was pre-specified as the primary pharmacodynamic endpoint in both studies. Two separate, double-blind, randomized, placebo-controlled, crossover studies evaluated the effects of multiple-dose LRPT on the pharmacodynamics of multiple-dose clopidogrel or aspirin. Healthy subjects were randomized to once-daily oral doses of LRPT 40 mg or placebo to LRTP co-administered with clopidogrel 75 mg or aspirin 81 mg for 7 days with at least a 21-day washout between treatments. In both studies, bleeding time and platelet aggregation were assessed 4 and 24 hours post-dose on Day 7. Comparability was declared if the 90% confidence interval for the estimated geometric mean ratio ([LRPT+clopidogrel]/clopidogrel alone or [LRPT+aspirin]/aspirin alone) for bleeding time at 24 hours post-dose on Day 7 was contained within (0.66, 1.50). Concomitant daily administration of LRPT 40 mg with clopidogrel 75 mg or aspirin 81 mg resulted in an approximate 4-5% increase in bleeding time at 24 hours after the last dose vs. bleeding time after treatment with clopidogrel or aspirin alone, demonstrating that the treatments had comparable effects on bleeding time. Percent inhibition of platelet aggregation was not significantly different between LRPT co-administered with clopidogrel or aspirin vs. clopidogrel or aspirin alone at 24 hours post-dose at steady state. At 4 hours after the last dose, co-administration of LRPT 40 mg resulted in 3% and 41% increase in bleeding time vs. bleeding time after treatment with aspirin or clopidogrel alone, respectively. Co-administration of LPRT with clopidogrel or aspirin was generally well tolerated in healthy subjects. Co-administration of multiple doses of LRPT 40 mg and clopidogrel 75 mg or aspirin 81 mg had no clinically important effects on bleeding time or platelet aggregation.


Subject(s)
Aspirin/pharmacology , Blood Platelets/drug effects , Indoles/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Ticlopidine/analogs & derivatives , Adolescent , Adult , Aspirin/adverse effects , Bleeding Time , Blood Platelets/metabolism , Clopidogrel , Female , Humans , Indoles/adverse effects , Male , Middle Aged , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/adverse effects , Ticlopidine/adverse effects , Ticlopidine/pharmacology , Young Adult
14.
Clin Transl Sci ; 14(5): 1935-1944, 2021 09.
Article in English | MEDLINE | ID: mdl-34463432

ABSTRACT

Islatravir (MK-8591) is a nucleoside analogue in development for the treatment and prevention of HIV-1. Two phase 1 trials were conducted during initial evaluation of islatravir: rising single doses (Study 1) and rising multiple doses (Study 2) of oral islatravir in male and female participants without HIV (aged 18-60 years). Safety, tolerability, and pharmacokinetics of islatravir (plasma) and islatravir-triphosphate (peripheral blood mononuclear cells) were assessed. In Study 1, 24 participants, assigned to 1 of 3 panels, received alternating single doses of islatravir in a fasted state from 5 mg to 400 mg, or placebo, over 3 dosing periods; a 30 mg dose was additionally assessed following a high-fat meal. In Study 2, 8 participants per dose received 3 once-weekly doses of 10, 30, or 100 mg islatravir or placebo in a fasted state. For each panel in both trials, 6 participants received active drug and 2 received placebo. Islatravir was generally well-tolerated, with no serious adverse events or discontinuations due to adverse events. Islatravir was rapidly absorbed (median time to maximum plasma concentration 0.5 hours); plasma half-life was 49-61 h; intracellular islatravir-triphosphate half-life was 118-171 h. Plasma exposure increased in an approximately dose-proportional manner; there was no meaningful food effect. There was a modest degree of intracellular islatravir-triphosphate accumulation after multiple weekly dosing. After single oral doses of islatravir greater than or equal to 5 mg, intracellular islatravir-triphosphate levels were comparable to levels associated with efficacy in preclinical studies. These results warrant continued clinical investigation of islatravir.


Subject(s)
Anti-HIV Agents/adverse effects , Deoxyadenosines/adverse effects , Administration, Oral , Adolescent , Adult , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Deoxyadenosines/administration & dosage , Deoxyadenosines/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , Female , Half-Life , Healthy Volunteers , Humans , Leukocytes, Mononuclear , Male , Middle Aged , Young Adult
15.
Eur J Nucl Med Mol Imaging ; 37(5): 920-33, 2010 May.
Article in English | MEDLINE | ID: mdl-20033684

ABSTRACT

PURPOSE: Quantitative imaging of the type 1 cannabinoid receptor (CB1R) opens perspectives for many neurological and psychiatric disorders. We characterized the kinetics and reproducibility of the CB1R tracer [(18)F]MK-9470 in human brain. METHODS: [(18)F]MK-9470 data were analysed using reversible models and the distribution volume V (T) and V (ND) k (3) (V (ND) k (3) = K (1) k (2)) were estimated. Tracer binding was also evaluated using irreversible kinetics and the irreversible uptake constant K (i) and fractional uptake rate (FUR) were estimated. The effect of blood flow on these parameters was evaluated. Additionally, the possibility of determining the tracer plasma kinetics using a reduced number of blood samples was also examined. RESULTS: A reversible two-tissue compartment model using a global k (4) value was necessary to describe brain kinetics. Both V (T) and V (ND) k (3) were estimated satisfactorily and their test-retest variability was between 10% and 30%. Irreversible methods adequately described brain kinetics and FUR values were equivalent to K (i). The linear relationship between K (i) and V (ND) k (3) demonstrated that K (i) or FUR and thus the simple measure of tracer brain uptake provide CB1R availability information. The test-retest variability of K (i) and FUR was <10% and estimates were independent of blood flow. Brain uptake can be used as a receptor availability index, albeit at the expense of potential bias due to between-subject differences in tracer plasma kinetics. CONCLUSION: [(18)F]MK-9470 specific binding can be accurately determined using FUR values requiring a short scan 90 to 120 min after tracer administration. Our results suggest that [(18)F]MK-9470 plasma kinetics can be assessed using a few venous samples.


Subject(s)
Brain/metabolism , Positron-Emission Tomography , Pyridines/metabolism , Pyridines/pharmacokinetics , Receptor, Cannabinoid, CB1/metabolism , Adult , Cerebrovascular Circulation , Feasibility Studies , Female , Humans , Kinetics , Male , Middle Aged , Models, Biological , Pyridines/blood , Radioactive Tracers , Young Adult
16.
Br J Clin Pharmacol ; 69(1): 15-22, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20078608

ABSTRACT

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: * Calcitonin gene-related peptide (CGRP) was first described as a potent vasodilator. * CGRP is also increasingly recognized as a key player in the pathophysiology of migraine, and CGRP receptor antagonists potentially offer a new approach for treating migraine. * A novel pharmacodynamic assay to measure CGRP receptor antagonist activity non-invasively in humans has been developed, which involves measuring the increase in dermal blood flow induced by topical application of capsaicin on the forearm. WHAT THIS STUDY ADDS: * This study shows that the novel oral CGRP receptor antagonist, telcagepant, inhibits the increases in dermal blood flow induced by the topical application of capsaicin on the human forearm. * This experimental medicine model may have utility to assist in dose selection for the development of CGRP receptor antagonists. AIMS: To evaluate inhibition of capsaicin-induced increase in dermal blood flow (DBF) following telcagepant (MK-0974), a potent and selective orally bioavailable calcitonin gene-related peptide (CGRP) receptor antagonist being developed for the acute treatment of migraine. METHODS: A three-period crossover study in 12 healthy adult men. Each subject received a single oral dose of telcagepant 300 mg, telcagepant 800 mg or placebo at 0 h, followed 0.5 and 3.5 h later by two topical doses of 300 and 1000 microg capsaicin per 20 microl water-ethanol mixture. Capsaicin was applied at two sites on the volar surface of the subjects' left and right forearms. DBF was assessed by laser Doppler perfusion imaging immediately before ('baseline'), and 0.5 h after each capsaicin application at 1 and 4 h. Plasma samples to determine telcagepant concentrations were collected immediately after laser Doppler perfusion imaging. A pharmacodynamic model was developed to explore the relationship between plasma concentration and inhibition of capsaicin-induced increase in DBF. RESULTS: Geometric mean plasma concentrations after dosing with 300 mg and 800 mg telcagepant were 720 and 1146 nm, respectively, at 1 h, vs. 582 and 2548 nm, respectively, at 4 h. The pharmacodynamic model suggested that the EC(90) for telcagepant inhibition of capsaicin-induced increases in DBF was 909 nm. CONCLUSIONS: Telcagepant inhibits the increases in DBF induced by the topical application of capsaicin on the human forearm. This experimental medicine model may have utility to assist in dose selection for the development of CGRP receptor antagonists.


Subject(s)
Azepines/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists , Capsaicin/pharmacology , Imidazoles/pharmacology , Regional Blood Flow/drug effects , Skin/blood supply , Vasodilator Agents/pharmacology , Administration, Oral , Administration, Topical , Adolescent , Adult , Azepines/administration & dosage , Azepines/metabolism , Cross-Over Studies , Dose-Response Relationship, Drug , Drug Interactions/physiology , Forearm/blood supply , Humans , Imidazoles/administration & dosage , Imidazoles/metabolism , Laser-Doppler Flowmetry , Male , Middle Aged , Models, Biological , Young Adult
17.
Lancet HIV ; 7(3): e164-e172, 2020 03.
Article in English | MEDLINE | ID: mdl-31911147

ABSTRACT

BACKGROUND: Islatravir (also known as ISL and MK-8591) is a unique nucleoside reverse transcriptase translocation inhibitor in clinical development for treatment of people with HIV-1 infection. In preclinical studies, intracellular islatravir-triphosphate exhibits a long half-life and prolonged virological effects. In this study, we aimed to assess islatravir safety, pharmacokinetics, and antiretroviral activity in treatment-naive adults with HIV-1 infection. METHODS: This open-label, consecutive-panel, phase 1b trial was done at Charité Research Organisation (Berlin, Germany) and included men and women (aged 18-60 years, inclusive) with HIV-1 infection who were ART naive. Participants were required to have plasma HIV-1 RNA counts of at least 10 000 copies per mL within 30 days before the trial treatment phase, without evidence of resistance to nucleoside reverse transcriptase inhibitors. Participants were enrolled in one of five consecutive dosing panels, receiving a single oral dose of islatravir (0·5-30 mg). The primary outcomes were safety and tolerability of islatravir and change from baseline in HIV-1 plasma RNA; secondary outcomes were islatravir plasma and islatravir-triphosphate intracellular pharmacokinetics. We obtained descriptive safety and pharmacokinetics statistics, and estimated efficacy results from a longitudinal data analysis model. This study is registered with ClinicalTrials.gov, NCT02217904, and EudraCT, 2014-002192-28. FINDINGS: Between Sept 17, 2015, and May 11, 2017, we enrolled 30 participants (six per panel). Islatravir was generally well tolerated. 27 (90%) participants had 60 adverse events after receipt of drug, of which 21 (35%) were deemed to be drug related. The most common (n>1) drug-related adverse events were headache (in nine [30%] participants) and diarrhoea (in two [7%]). No serious adverse events were reported, and no participants discontinued due to an adverse event. Plasma islatravir pharmacokinetics and intracellular islatravir-triphosphate pharmacokinetics were approximately dose proportional. The islatravir-triphosphate intracellular half-life was 78·5-128·0 h. Least-squares mean HIV-1 RNA at 7 days after dose decreased from 1·67 log10 copies per mL (95% CI 1·42-1·92) at 10 mg dose to 1·20 log10 copies per mL (0·95-1·46) at 0·5 mg dose. No genetic changes consistent with development of viral resistance were detected. INTERPRETATION: Single doses of islatravir as low as 0·5 mg significantly suppressed HIV-1 RNA by more than 1·0 log at day 7 in treatment-naive adults with HIV-1 infection and were generally well tolerated, supporting the further development of islatravir as a flexible-dose treatment for individuals with HIV-1 infection. FUNDING: Merck Sharp & Dohme Corp, a subsidiary of Merck & Co Inc, Kenilworth, NJ, USA.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Deoxyadenosines/pharmacokinetics , HIV Infections/drug therapy , Reverse Transcriptase Inhibitors/pharmacokinetics , Adult , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Deoxyadenosines/administration & dosage , Deoxyadenosines/adverse effects , Female , HIV Infections/virology , HIV-1/drug effects , HIV-1/enzymology , HIV-1/physiology , Humans , Male , Middle Aged , Reverse Transcriptase Inhibitors/administration & dosage , Reverse Transcriptase Inhibitors/adverse effects , Young Adult
18.
J Nucl Med ; 49(3): 439-45, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18287275

ABSTRACT

UNLABELLED: The cannabinoid type-1 (CB1) receptor is one of the most abundant G-coupled protein receptors in the human body and is responsible for signal transduction of both endogenous and exogenous cannabinoids. The endocannabinoid system is strongly implicated in regulation of homeostasis and several neuropsychiatric disorders, obesity, and associated comorbidities, such as dyslipidemia and metabolic syndrome. We have used whole-body PET/CT to characterize the biodistribution and dosimetry of a novel high-affinity, subtype-selective radioligand, (18)F-MK-9470, in healthy male and female subjects. METHODS: Eight nonobese subjects (5 men, 3 women; age, 22-54 y) underwent serial whole-body PET/CT for 6 h after a bolus injection of 251 +/- 25 MBq (18)F-MK-9470 (N-[2-(3-cyano-phenyl)-3-(4-(2-(18)F-fluorethoxy)phenyl)-1-methylpropyl]-2-(5-methyl-2-pyridyloxy)-2-methylproponamide). Source organs were delineated 3-dimensionally using the combined morphologic and functional data. Residence times were derived from time-activity profiles using both the trapezoid rule and curve fitting. Individual organ doses and effective doses were determined using the OLINDA software package, with different approaches for gastrointestinal and urinary excretion modeling. RESULTS: (18)F-MK-9470 is taken up slowly in the brain, reaching a plateau at approximately 90-120 min after bolus injection and is excreted predominantly through the hepatobiliary system. The gallbladder, upper large intestine, small intestine, and liver are the organs with the highest absorbed dose (average: 159, 98, 87, and 86 microGy/MBq, respectively). The mean effective dose (ED) was 22.8 +/- 4.3 microSv/MBq, indicating relatively low intersubject variability and a mean value in the range of many commercially available (18)F-labeled radiopharmaceuticals. Brain uptake was relatively high compared with that of existing central nervous system ligands for other receptors, between 3.2% and 4.9% of the injected dose. CONCLUSION: The estimated radiation burden of (18)F-MK-9470 for PET CB1 receptor imaging shows relatively low variability between subjects and has an acceptable ED, which allows multiple serial cerebral scans of good image quality, while remaining within the risk category class II-b defined by the World Health Organization and the International Commission for Radiation Protection for a standard injected activity (185-370 MBq).


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Pyridines/pharmacokinetics , Receptor, Cannabinoid, CB1/metabolism , Whole-Body Counting , Adult , Body Burden , Female , Humans , Male , Metabolic Clearance Rate , Middle Aged , Organ Specificity , Radiation Dosage , Radionuclide Imaging , Radiopharmaceuticals/analysis , Radiopharmaceuticals/pharmacokinetics , Reference Values , Relative Biological Effectiveness , Tissue Distribution
19.
J Clin Pharmacol ; 48(6): 734-44, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18508950

ABSTRACT

Taranabant is a cannabinoid-1 receptor inverse agonist for the treatment of obesity. This study evaluated the safety, pharmacokinetics, and pharmacodynamics of taranabant (5, 7.5, 10, or 25 mg once daily for 14 days) in 60 healthy male subjects. Taranabant was rapidly absorbed, with a median t(max) of 1.0 to 2.0 hours and a t(1/2) of approximately 74 to 104 hours. Moderate accumulation was observed in C(max) (1.18- to 1.40-fold) and AUC(0-24 h) (1.5- to 1.8-fold) over 14 days for the 5-, 7.5-, and 10-mg doses, with an accumulation half-life ranging from 15 to 21 hours. Steady state was reached after 13 days. After multiple-dose administration, plasma AUC(0-24 h) and C(max) of taranabant increased dose proportionally (5-10 mg) and increased somewhat less than dose proportionally for 25 mg. Taranabant was generally well tolerated up to doses of 10 mg and exhibited multiple-dose pharmacokinetics consistent with once-daily dosing.


Subject(s)
Amides/pharmacokinetics , Anti-Obesity Agents/pharmacokinetics , Pyridines/pharmacokinetics , Receptor, Cannabinoid, CB1/drug effects , Adult , Amides/administration & dosage , Amides/adverse effects , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/adverse effects , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Drug Inverse Agonism , Half-Life , Humans , Male , Middle Aged , Obesity/drug therapy , Pyridines/administration & dosage , Pyridines/adverse effects
20.
J Clin Endocrinol Metab ; 91(11): 4612-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16912128

ABSTRACT

CONTEXT: In response to a meal, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are released and modulate glycemic control. Normally these incretins are rapidly degraded by dipeptidyl peptidase-4 (DPP-4). DPP-4 inhibitors are a novel class of oral antihyperglycemic agents in development for the treatment of type 2 diabetes. The degree of DPP-4 inhibition and the level of active incretin augmentation required for glucose lowering efficacy after an oral glucose tolerance test (OGTT) were evaluated. OBJECTIVE: The objective of the study was to examine the pharmacodynamics, pharmacokinetics, and tolerability of sitagliptin. DESIGN: This was a randomized, double-blind, placebo-controlled, three-period, single-dose crossover study. SETTING: The study was conducted at six investigational sites. PATIENTS: The study population consisted of 58 patients with type 2 diabetes who were not on antihyperglycemic agents. INTERVENTIONS: Interventions included sitagliptin 25 mg, sitagliptin 200 mg, or placebo. MAIN OUTCOME MEASURES: Measurements included plasma DPP-4 activity; post-OGTT glucose excursion; active and total incretin GIP levels; insulin, C-peptide, and glucagon concentrations; and sitagliptin pharmacokinetics. RESULTS: Sitagliptin dose-dependently inhibited plasma DPP-4 activity over 24 h, enhanced active GLP-1 and GIP levels, increased insulin/C-peptide, decreased glucagon, and reduced glycemic excursion after OGTTs administered at 2 and 24 h after single oral 25- or 200-mg doses of sitagliptin. Sitagliptin was generally well tolerated, with no hypoglycemic events. CONCLUSIONS: In this study in patients with type 2 diabetes, near maximal glucose-lowering efficacy of sitagliptin after single oral doses was associated with inhibition of plasma DPP-4 activity of 80% or greater, corresponding to a plasma sitagliptin concentration of 100 nm or greater, and an augmentation of active GLP-1 and GIP levels of 2-fold or higher after an OGTT.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Type 2/blood , Dipeptidyl-Peptidase IV Inhibitors , Gastric Inhibitory Polypeptide/blood , Pyrazines/pharmacokinetics , Triazoles/pharmacokinetics , Administration, Oral , Adult , Area Under Curve , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Female , Glucagon-Like Peptide 1/blood , Glucose Tolerance Test/methods , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Placebos , Pyrazines/administration & dosage , Pyrazines/adverse effects , Pyrazines/therapeutic use , Sitagliptin Phosphate , Triazoles/administration & dosage , Triazoles/adverse effects , Triazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL