Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 592(7856): 799-803, 2021 04.
Article in English | MEDLINE | ID: mdl-33854232

ABSTRACT

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cyclin D/metabolism , Genomic Instability , S Phase , Animals , Cell Line , Cell Proliferation , Checkpoint Kinase 1/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , DNA Replication , Gene Expression Regulation, Developmental , Genes, Tumor Suppressor , Humans , Mice , Mice, Knockout , Synthetic Lethal Mutations
2.
J Allergy Clin Immunol ; 151(4): 911-921, 2023 04.
Article in English | MEDLINE | ID: mdl-36758836

ABSTRACT

BACKGROUND: Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE: Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS: We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS: We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS: Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.


Subject(s)
COVID-19 , Lymphopenia , Humans , COVID-19/metabolism , SARS-CoV-2 , Thymus Gland , Lymphopenia/genetics , Patient Acuity
3.
Haematologica ; 106(4): 987-999, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32381575

ABSTRACT

The prognosis of many patients with chemotherapy-refractory or multiply relapsed CD30+ non-Hodgkin Lymphoma (NHL) or Hodgkin lymphoma (HL) still remains poor, and novel therapeutic approaches are warranted to address this unmet clinical need. In light of this consideration, we designed and pre-clinically validated a Chimeric Antigen Receptor (CAR) construct characterized by a novel anti-CD30 single-chain variable-fragment cassette, linked to CD3ζ by the signaling domains of two costimulatory molecules, namely either CD28.4-1BB or CD28.OX40. We found that CAR.CD30 T-cells exhibit remarkable cytolytic activity in vitro against HL and NHL cell lines, with sustained proliferation and pro-inflammatory cytokine production, even after multiple and sequential lymphoma cell challenges. CAR.CD30 T-cells also demonstrated anti-lymphoma activity in two in vivo xenograft immune-deficient mouse models of metastatic HL and NHL. We observed that administration of CAR.CD30 T-cells, incorporating the CD28.OX40 costimulatory domains and manufactured in the presence of IL7 and IL15, were associated with the best overall survival in the treated mice, along with the establishment of a long-term immunological memory, able to protect mice from further tumor re-challenge. Our data indicate that, in the context of in vivo systemic metastatic xenograft mouse models, the costimulatory machinery of CD28.OX40 is crucial for improving persistence, in vivo expansion and proliferation of CAR.CD30 T-cells upon tumor encounter. CD28.OX40 costimulatory combination is ultimately responsible for the antitumor efficacy of the approach, paving the way to translate this therapeutic strategy in patients with CD30+ HL and NHL.


Subject(s)
CD28 Antigens , Receptors, Chimeric Antigen , Animals , Humans , Immunotherapy, Adoptive , Mice , Receptors, Antigen, T-Cell , T-Lymphocytes
4.
Int J Mol Sci ; 22(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067464

ABSTRACT

Background: Spindle cell rhabdomyosarcoma (S-RMS) is a rare tumor that was previously considered as an uncommon variant of embryonal RMS (ERMS) and recently reclassified as a distinct RMS subtype with NCOA2, NCOA1, and VGLL2 fusion genes. In this study, we established a cell line (S-RMS1) derived from a four-month-old boy with infantile spindle cell RMS harboring SRF-NCOA2 gene fusion. Methods: Morphological and molecular characteristics of S-RMS1 were analyzed and compared with two RMS cell lines, RH30 and RD18. Whole genome sequencing of S-RMS1 and clinical exome sequencing of genomic DNA were performed. Results: S-RMS1 showed cells small in size, with a fibroblast-like morphology and positivity for MyoD-1, myogenin, desmin, and smooth muscle actin. The population doubling time was 3.7 days. Whole genome sequencing demonstrated that S-RMS1 retained the same genetic profile of the tumor at diagnosis. A Western blot analysis showed downregulation of AKT-p and YAP-p while RT-qPCR showed upregulation of endoglin and GATA6 as well as downregulation of TGFßR1 and Mef2C transcripts. Conclusion: This is the first report of the establishment of a cell line from an infantile spindle cell RMS with SRF-NCOA2 gene fusion. S-RMS1 should represent a useful tool for the molecular characterization of this rare and almost unknown tumor.


Subject(s)
Gene Fusion/genetics , Nuclear Receptor Coactivator 2/genetics , Recombinant Fusion Proteins/genetics , Rhabdomyosarcoma/genetics , Serum Response Factor/genetics , Adult , Cell Line , Child , Child, Preschool , Down-Regulation/genetics , Exome/genetics , Female , Humans , Infant , Male , Myogenin/genetics , Nuclear Receptor Coactivator 1/genetics , Young Adult
5.
J Hepatol ; 72(3): 411-419, 2020 03.
Article in English | MEDLINE | ID: mdl-31655133

ABSTRACT

BACKGROUND & AIM: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in adults and children. Along with obesity, diabetes and insulin resistance, genetic factors strongly impact on NAFLD development and progression. Dysregulated bile acid metabolism and the fibroblast growth factor 19 (FGF19) pathway play a pivotal role in NAFLD pathogenesis. However, the mechanism through which the FGF19 receptor system is associated with liver damage in NAFLD remains to be defined. METHODS: We evaluated the impact of the rs17618244 G>A ß-Klotho (KLB) variant on liver damage in 249 pediatric patients with biopsy-proven NAFLD and the association of this variant with the expression of hepatic and soluble KLB. In vitro models were established to investigate the role of the KLB mutant. RESULTS: The KLB rs17618244 variant was associated with an increased risk of ballooning and lobular inflammation. KLB plasma levels were lower in carriers of the rs17618244 minor A allele and were associated with lobular inflammation, ballooning and fibrosis. In HepG2 and Huh7 hepatoma cell lines, exposure to free fatty acids caused a severe reduction of intracellular and secreted KLB. Finally, KLB downregulation obtained by the expression of a KLB mutant in HepG2 and Huh7 cells induced intracellular lipid accumulation and upregulation of p62, ACOX1, ACSL1, IL-1ß and TNF-α gene expression. CONCLUSION: In conclusion, we showed an association between the rs17618244 KLB variant, which leads to reduced KLB expression, and the severity of NAFLD in pediatric patients. We can speculate that the KLB protein may exert a protective role against lipotoxicity and inflammation in hepatocytes. LAY SUMMARY: Genetic and environmental factors strongly impact on the pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD). The FGF19/FGFR4/KLB pathway plays a pivotal role in the pathogenesis of NAFLD. The aim of the study was to investigate the impact of a genetic variant in the KLB gene on the severity of liver disease. Our data suggest that the KLB protein plays a protective role against lipotoxicity and inflammation in hepatocytes.


Subject(s)
Liver Cirrhosis/blood , Liver Cirrhosis/genetics , Membrane Proteins/blood , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Polymorphism, Single Nucleotide , Adolescent , Alleles , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Child , Down-Regulation/genetics , Female , Fibroblast Growth Factors/metabolism , Hep G2 Cells , Humans , Inflammation/blood , Inflammation/epidemiology , Klotho Proteins , Liver/pathology , Liver Cirrhosis/epidemiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/pathology , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Rome/epidemiology
6.
J Pediatr ; 216: 117-127.e2, 2020 01.
Article in English | MEDLINE | ID: mdl-31526528

ABSTRACT

OBJECTIVE: To evaluate the histopathologic modifications in liver and visceral adipose tissue (VAT), and to correlate these changes with clinical measures, adipokine production, and proinflammatory cytokines in a population of adolescents with obesity with nonalcoholic fatty liver disease (NAFLD) who underwent laparoscopic sleeve gastrectomy (LSG). STUDY DESIGN: Twenty adolescents with obesity who underwent LSG and with biopsy-proven NAFLD were included. Patients underwent clinical evaluation and blood tests at baseline and 1 year after the surgical procedure. Liver and VAT specimens were processed for routine histology, immunohistochemistry, and immunofluorescence. RESULTS: In adolescents with obesity and NAFLD, hepatic histologic alterations were uncorrelated with VAT inflammation. LSG induced in both liver and VAT tissue histopathology amelioration and macrophage profile modification that were correlated with body mass index and improvement in insulin resistance. The adipokine profile in liver and VAT was associated with weight loss and histologic improvement after LSG. Serum proinflammatory cytokines were correlated with liver and VAT histopathology and IL-1ß and IL-6 levels were independently predicted by liver necroinflammatory grade. CONCLUSIONS: This study suggests a unique adipose tissue/fatty liver crosstalk in pediatric patients. LSG induces a similar pattern of histologic improvement in the liver and in VAT. Besides VAT, our results strengthen the role of the liver in adipocytokine production and its contribution to systemic inflammation in pediatric patients with NAFLD.


Subject(s)
Gastrectomy/methods , Intra-Abdominal Fat/pathology , Laparoscopy , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Pediatric Obesity/surgery , Adipokines/biosynthesis , Adolescent , Correlation of Data , Female , Humans , Intra-Abdominal Fat/metabolism , Liver/metabolism , Macrophages , Male , Non-alcoholic Fatty Liver Disease/complications , Pediatric Obesity/complications , Prospective Studies
7.
Liver Int ; 40(12): 3127-3139, 2020 12.
Article in English | MEDLINE | ID: mdl-33098723

ABSTRACT

BACKGROUND AND AIMS: Liver X receptors (LXRs) exert anti-inflammatory effects even though their hepatic activation is associated with hypertriglyceridemia and hepatic steatosis. Selective induction of LXRs in the gut might provide protective signal(s) in the aberrant wound healing response that induces fibrosis during chronic liver injury, without hypertriglyceridemic and steatogenic effects. METHODS: Mice with intestinal constitutive LXRα activation (iVP16-LXRα) were exposed to intraperitoneal injection of carbon tetrachloride (CCl4 ) for 8 weeks, and in vitro cell models were used to evaluate the beneficial effect of high-density lipoproteins (HDL). RESULTS: After CCl4 treatment, the iVP16-LXRα phenotype showed reduced M1 macrophage infiltration, increased expression M2 macrophage markers, and lower expression of hepatic pro-inflammatory genes. This anti-inflammatory effect in the liver was also associated with decreased expression of hepatic oxidative stress genes and reduced expression of fibrosis markers. iVP16-LXRα exhibited increased reverse cholesterol transport in the gut by ABCA1 expression and consequent enhancement of the levels of circulating HDL and their receptor SRB1 in the liver. No hepatic steatosis development was observed in iVP16-LXRα. In vitro, HDL induced a shift from M1 to M2 phenotype of LPS-stimulated Kupffer cells, decreased TNFα-induced oxidative stress in hepatocytes and reduced NF-kB activity in both cells. SRB1 silencing reduced TNFα gene expression in LPS-stimulated KCs, and NOX-1 and IL-6 in HepG2. CONCLUSIONS: Intestinal activation of LXRα modulates hepatic response to injury by increasing circulating HDL levels and SRB1 expression in the liver, thus suggesting this circuit as potential actionable pathway for therapy.


Subject(s)
Kupffer Cells , Liver , Animals , Cholesterol, HDL , Liver X Receptors , Mice , Mice, Inbred C57BL
8.
Int J Mol Sci ; 21(16)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806748

ABSTRACT

Focal adhesion kinase (FAK) is over-expressed and is correlated with aggressiveness in adult hepatocellular carcinoma (HCC). Inhibition of FAK decreases HCC invasiveness by down-regulating Enhancer of Zeste homolog 2 (EZH2), an epigenetic controller, that acts in transcriptional repression of a large number of genes via histone 3 methylation of lysine 27 (H3K27me3). Here, we investigated the hepatic expression of total FAK, EZH2, H3K27me3, and proliferating cell nuclear antigen (PCNA) in 17 pediatric HCCs and 8 healthy livers (CTRL). Quantitative imaging analysis showed that FAK gene/protein expression is up-regulated in HCCs compared to CTRL and, among tumor samples the levels of this gene/protein are significantly higher in cirrhotic HCCs than in a healthy milieu. Accordingly, the protein levels of EZH2 were also significantly increased in HCCs from a cirrhotic background. Intriguingly, the protein expression of FAK, EZH2, and PCNA significantly inversely correlated with tumor size. Finally, in HCC samples, mainly in cirrhotic background, the up-regulation of FAK gene positively correlated with that observed in ß-Catenin gene. Conclusion: FAK gene/protein is over-expressed in pediatric HCCs concomitantly to EZH2 protein and ß-Catenin gene, with a more significant up-regulation in a cirrhotic background. This triad of interactors deserves further investigations for translational application.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/enzymology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/enzymology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Nucleus/pathology , Child , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Liver Cirrhosis/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Lysine/metabolism , Male , Methylation , Phosphorylation , Phosphotyrosine/metabolism , Prognosis , Proliferating Cell Nuclear Antigen/metabolism , Tumor Burden , Up-Regulation/genetics , beta Catenin/genetics , beta Catenin/metabolism
9.
Int J Mol Sci ; 20(14)2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31337151

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a complex disease ranging from steatosis to non-alcoholic steatohepatitis (NASH). Galectin-3 (Gal-3), which is a ß-galactoside binding protein, has been associated with liver fibrosis, but its role in NAFLD remains elusive. We investigated the expression of Gal-3 in liver resident cells and its potential association with liver damage in 40 children with biopsy-proven NAFLD. We found that several liver cells expressed Gal-3. The number of total Gal-3 positive cells decreased with the severity of disease and the cells were correlated with the presence of steatosis and the diagnosis of NASH. CD68 macrophages expressed Gal-3 but the number CD68/Gal-3 positive cells was significantly reduced in patients diagnosed with steatosis and NASH. Triple CD68/CD206/Gal-3, which represented the subpopulation of M2 macrophages, were mainly present in patients without NASH, and clearly reduced in patients with steatosis and NASH. On the contrary, the number of α-smooth muscle actin (SMA)/Gal-3 positive cells increased with the severity of fibrosis in children with NAFLD. Our data demonstrated that the number of Gal-3 positive cells was associated with tissue damage in different ways, which suggests a dual role of this protein in the pathogenesis of pediatric NAFLD, even if the role of Gal-3 deserves further studies.


Subject(s)
Galectin 3/metabolism , Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/metabolism , Adolescent , Age Factors , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Bile Ducts/metabolism , Biomarkers , Biopsy , Blood Proteins , Child , Female , Galectins , Humans , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Liver Function Tests , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Non-alcoholic Fatty Liver Disease/etiology , Prognosis , Severity of Illness Index
10.
Hepatology ; 65(2): 451-464, 2017 02.
Article in English | MEDLINE | ID: mdl-27028797

ABSTRACT

There is evidence that nonalcoholic fatty liver disease (NAFLD) is affected by gut microbiota. Therefore, we investigated its modifications in pediatric NAFLD patients using targeted metagenomics and metabolomics. Stools were collected from 61 consecutive patients diagnosed with nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), or obesity and 54 healthy controls (CTRLs), matched in a case-control fashion. Operational taxonomic units were pyrosequenced targeting 16S ribosomal RNA and volatile organic compounds determined by solid-phase microextraction gas chromatography-mass spectrometry. The α-diversity was highest in CTRLs, followed by obese, NASH, and NAFL patients; and ß-diversity distinguished between patients and CTRLs but not NAFL and NASH. Compared to CTRLs, in NAFLD patients Actinobacteria were significantly increased and Bacteroidetes reduced. There were no significant differences among the NAFL, NASH, and obese groups. Overall NAFLD patients had increased levels of Bradyrhizobium, Anaerococcus, Peptoniphilus, Propionibacterium acnes, Dorea, and Ruminococcus and reduced proportions of Oscillospira and Rikenellaceae compared to CTRLs. After reducing metagenomics and metabolomics data dimensionality, multivariate analyses indicated a decrease of Oscillospira in NAFL and NASH groups and increases of Ruminococcus, Blautia, and Dorea in NASH patients compared to CTRLs. Of the 292 volatile organic compounds, 26 were up-regulated and 2 down-regulated in NAFLD patients. Multivariate analyses found that combination of Oscillospira, Rickenellaceae, Parabacteroides, Bacteroides fragilis, Sutterella, Lachnospiraceae, 4-methyl-2-pentanone, 1-butanol, and 2-butanone could discriminate NAFLD patients from CTRLs. Univariate analyses found significantly lower levels of Oscillospira and higher levels of 1-pentanol and 2-butanone in NAFL patients compared to CTRLs. In NASH, lower levels of Oscillospira were associated with higher abundance of Dorea and Ruminococcus and higher levels of 2-butanone and 4-methyl-2-pentanone compared to CTRLs. CONCLUSION: An Oscillospira decrease coupled to a 2-butanone up-regulation and increases in Ruminococcus and Dorea were identified as gut microbiota signatures of NAFL onset and NAFL-NASH progression, respectively. (Hepatology 2017;65:451-464).


Subject(s)
Gastrointestinal Microbiome/genetics , Non-alcoholic Fatty Liver Disease/microbiology , Obesity/microbiology , Adolescent , Analysis of Variance , Case-Control Studies , Child , Fatty Liver/microbiology , Fatty Liver/physiopathology , Female , Humans , Male , Multivariate Analysis , Non-alcoholic Fatty Liver Disease/physiopathology , Obesity/physiopathology , Pediatrics , Proteogenomics/methods , Reference Values , Sensitivity and Specificity
11.
Liver Int ; 38(2): 342-349, 2018 02.
Article in English | MEDLINE | ID: mdl-28746779

ABSTRACT

BACKGROUND & AIMS: Treatment with the farnesoid X receptor (FXR) agonist obeticholic acid is ineffective in some patients with non-alcoholic steatohepatitis (NASH) but the explanation is uncertain. We investigated hepatic FXR expression, and measurements of fibroblast growth factor 19 (FGF19) and bile acids (BAs) in children with NAFLD to investigate relationships with NASH. METHODS: 33 children with NAFLD who underwent diagnostic liver biopsy were studied. Hepatic FXR protein levels and circulating FGF19 concentrations were compared with those analysed in five control subjects with proven normal liver histology. NASH was defined by the Paediatric NAFLD Histological Score (PNHS). Binary logistic regression with adjustment for covariates and potential confounders was undertaken to test factors independently associated with: a) NASH and b) hepatic FXR protein levels. RESULTS: Mean ± SD age was 13.7 ± 1.9 years. Nineteen patients had NASH (PNHS ≥ 85) and 14 did not have NASH (PNHS < 85). Hepatic FXR level and plasma FGF19 concentration varied ~10-fold and 5-fold, respectively, between groups, and was highest in control subjects, intermediate in NAFLD without NASH, and lowest in NASH (between group differences P < .001 and P < .01 respectively). NASH was independently associated with both FXR protein levels (OR = 0.18, 95% CI 0.09, 0.38) and FGF19 concentration (OR = 0.55, 95% CI 0.20, 0.89). CONCLUSIONS: FXR protein levels vary markedly between normal liver, NAFLD without NASH, and NASH. Low levels of FXR are independently associated with NASH.


Subject(s)
Fibroblast Growth Factors/blood , Liver/chemistry , Non-alcoholic Fatty Liver Disease/blood , Receptors, Cytoplasmic and Nuclear/analysis , Adolescent , Age Factors , Bile Acids and Salts/analysis , Biomarkers/blood , Biopsy , Case-Control Studies , Child , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Humans , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/diagnosis , Proof of Concept Study
12.
J Pediatr ; 180: 31-37.e2, 2017 01.
Article in English | MEDLINE | ID: mdl-27697327

ABSTRACT

OBJECTIVE: To determine whether bariatric surgery is effective for the treatment of nonalcoholic steatohepatitis (NASH) in adolescence, we compared the efficacy of laparoscopic sleeve gastrectomy (LSG) with that of lifestyle intervention (nonsurgical weight loss [NSWL]) for NASH reversal in obese adolescents. STUDY DESIGN: Obese (body mass index ≥ 35 kg/m2) adolescents (13-17 years of age) with biopsy-proven NAFLD underwent LSG, lifestyle intervention plus intragastric weight loss devices (IGWLD), or only NSWL. At baseline and 1 year after treatment, patients underwent clinical and psychosocial evaluation, blood tests, liver biopsy, polysomnography, and 24-hour ambulatory blood pressure estimation. RESULTS: Twenty patients (21%) underwent LSG, 20 (21%) underwent IGWLD, and 53 (58%) received lifestyle intervention alone (NSWL). One year after treatment, patients who underwent LSG lost 21.5% of their baseline body weight, whereas patients who underwent IGWLD lost 3.4%, and patients who underwent NSWL increase 1.7%. In patients who underwent LSG, NASH reverted completely in all patients and hepatic fibrosis stage 2 disappeared in 18 patients (90%). After IGWLD, NASH reverted in 6 patients (24%) and fibrosis in 7 (37%). Patients who received the NSWL intervention did not improve significantly. Hypertension resolved in all patients who underwent LSG with preoperative hypertension (12/12) versus 50% (4/8) of the patients who underwent IGWLD (P = .02). The cohort-specific changes in impaired glucose metabolism were similar: 100% (9/9) of affected patients who underwent LSG versus 50% (1/2) of patients who underwent IGWLD (P = .02). LSG was also more affective in resolving dyslipidemia (55% [7/12] vs 26% [10/19]; P = .05) and sleep apnea (78% [2/9] vs 30% [11/20]; P = .001). CONCLUSION: LSG was more effective than lifestyle intervention, even when combined with intragastric devices, for reducing NASH and liver fibrosis in obese adolescents after 1 year of treatment.


Subject(s)
Bariatric Surgery , Gastrectomy/methods , Laparoscopy , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/etiology , Pediatric Obesity/complications , Pediatric Obesity/surgery , Adolescent , Female , Humans , Life Style , Male , Pediatric Obesity/therapy , Prospective Studies , Treatment Outcome
13.
Thorax ; 70(8): 769-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26069285

ABSTRACT

BACKGROUND: Mechanism(s) connecting obstructive sleep apnoea syndrome (OSAS) to liver injury in paediatric non-alcoholic fatty liver disease (NAFLD) are unknown. We hypothesised alterations in gut-liver axis and in the pool and phenotype of hepatic progenitor cells (HPCs) may be involved in OSAS-associated liver injury in NAFLD. METHODS: Eighty biopsy-proven NAFLD children (age, mean±SD, 11.4±2.0 years, 56% males, body mass index z-score 1.95±0.57) underwent a clinical-biochemical assessment, with measurement of insulin sensitivity, plasma cytokines, lipopolysaccharide (LPS), an intestinal permeability test and a standard polysomnography. Hepatic toll-like receptor (TLR)-4 expression by liver-resident cells and overall number and expression of resistin and adiponectin by HPCs were assessed by immunofluorescence and immunohistochemistry. OSAS was defined by an apnoea/hypopnoea index ≥1. RESULTS: OSAS was characterised by an increased intestinal permeability and endotoxemia, coupled with TLR-4 upregulation in hepatocytes, Kupffer and hepatic stellate cells (HSCs) and by an expansion of an adiponectin-deficient HPC pool, key features of steatohepatitis and fibrosis.The duration of haemoglobin desaturation (SaO2 <90%) independently predicted intestinal permeability (ß: 0.396; p=0.026), plasma LPS (ß: 0.358; p=0.008) and TLR-4 expression by hepatocytes (ß: 0.332; p=0.009), Kupffer cells (ß: 0.357; p=0.006) and HSCs (ß:0.445; p=0.002).SaO2 <90% predicted also HPC number (ß: 0.471; p=0.001) and impaired adiponectin expression by HPC pool (ß: -0.532; p=0.0009).These relationships were observed in obese and non-obese children. CONCLUSIONS: In paediatric NAFLD, OSAS is associated with increased endotoxemia coupled with impaired gut barrier function, with increased TLR-4-mediated hepatic susceptibility to endotoxemia and with an expansion of an adiponectin-deficient HPC pool. These alterations may represent a novel pathogenic link and a potential therapeutic target for OSAS-associated liver injury in NAFLD.


Subject(s)
Adiponectin/biosynthesis , Hepatocytes/pathology , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Sleep Apnea, Obstructive/metabolism , Apoptosis , Biopsy , Body Mass Index , Cell Cycle , Child , Female , Humans , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/pathology , Polysomnography , Retrospective Studies , Sleep Apnea, Obstructive/complications
14.
Diagnostics (Basel) ; 14(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396427

ABSTRACT

Digital pathology (DP) has begun to play a key role in the evaluation of liver specimens. Recent studies have shown that a workflow that combines DP and artificial intelligence (AI) applied to histopathology has potential value in supporting the diagnosis, treatment evaluation, and prognosis prediction of liver diseases. Here, we provide a systematic review of the use of this workflow in the field of hepatology. Based on the PRISMA 2020 criteria, a search of the PubMed, SCOPUS, and Embase electronic databases was conducted, applying inclusion/exclusion filters. The articles were evaluated by two independent reviewers, who extracted the specifications and objectives of each study, the AI tools used, and the results obtained. From the 266 initial records identified, 25 eligible studies were selected, mainly conducted on human liver tissues. Most of the studies were performed using whole-slide imaging systems for imaging acquisition and applying different machine learning and deep learning methods for image pre-processing, segmentation, feature extractions, and classification. Of note, most of the studies selected demonstrated good performance as classifiers of liver histological images compared to pathologist annotations. Promising results to date bode well for the not-too-distant inclusion of these techniques in clinical practice.

15.
Front Oncol ; 14: 1397647, 2024.
Article in English | MEDLINE | ID: mdl-38947885

ABSTRACT

Background: Hepatoblastoma (HB) is the most common pediatric hepatic malignancy. Despite the progress in HB treatment, investigating HB pathomechanisms to optimize stratification and therapies remains a focal point to improve the outcome for high-risk patients. Methods: Here, we pointed to explore the impact of these mechanisms in HB. An observational study was performed on liver samples from a cohort of 17 patients with a diagnosis of HB and two normal liver samples. The in vitro experiments were executed on the Huh6 human HB cell line treated with the FAK inhibitor TAE226. Results: Our results highlight a significant up-regulation of mRNA and protein expression of FAK in livers from HB with respect to normal livers. The increased protein expression of total and Tyr397 phosphorylated FAK (pTyr397FAK) was significantly correlated with the expression of some epigenetic regulators of histone H3 methylation and acetylation. Of note, the expression of pTyr397FAK, N-methyltransferase enzyme (EZH2) and tri-methylation of the H3K27 residue correlated with tumor size and alpha-fetoprotein (AFP) levels. Finally, TAE226 caused a significant reduction of pTyr397FAK, epigenetic regulators, AFP, EPCAM, OCT4, and SOX2, in association with anti-proliferative and pro-apoptotic effects on HB cells. Conclusion: Our results suggest a role of FAK in HB that requires further investigations mainly focused on the exploration of its effective diagnostic and therapeutic translatability.

16.
J Invest Dermatol ; 144(7): 1522-1533.e10, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38237731

ABSTRACT

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare skin fragility disorder caused by mutations in COL7A1. RDEB is hallmarked by trauma-induced unremitting blistering, chronic wounds with inflammation, and progressive fibrosis, leading to severe disease complications. There is currently no cure for RDEB-associated fibrosis. Our previous studies and increasing evidence highlighted the profibrotic role of NOTCH pathway in different skin disorders, including RDEB. In this study, we further investigated the role of NOTCH signaling in RDEB pathogenesis and explored the effects of its inhibition by γ-secretase inhibitors DAPT and PF-03084014 (nirogacestat). Our analyses demonstrated that JAG1 and cleaved NOTCH1 are upregulated in primary RDEB fibroblasts (ie, RDEB-derived fibroblasts) compared with controls, and their protein levels are further increased by TGF-ß1 stimulation. Functional assays unveiled the involvement of JAG1/NOTCH1 axis in RDEB fibrosis and demonstrated that its blockade counteracts a variety of fibrotic traits. In particular, RDEB-derived fibroblasts treated with PF-03084014 showed (i) a significant reduction of contractility, (ii) a diminished secretion of TGF-ß1 and collagens, and (iii) the downregulation of several fibrotic proteins. Although less marked than PF-03084014-treated cells, RDEB-derived fibroblasts exhibited a reduction of fibrotic traits also upon DAPT treatment. This study provides potential therapeutic strategies to antagonize RDEB fibrosis onset and progression.


Subject(s)
Amyloid Precursor Protein Secretases , Epidermolysis Bullosa Dystrophica , Fibroblasts , Fibrosis , Jagged-1 Protein , Signal Transduction , Humans , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Epidermolysis Bullosa Dystrophica/drug therapy , Epidermolysis Bullosa Dystrophica/pathology , Epidermolysis Bullosa Dystrophica/genetics , Signal Transduction/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Jagged-1 Protein/metabolism , Jagged-1 Protein/genetics , Down-Regulation/drug effects , Receptor, Notch1/metabolism , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/genetics , Dipeptides/pharmacology , Collagen Type VII/genetics , Collagen Type VII/metabolism , Cells, Cultured , Skin/pathology , Skin/drug effects , Skin/metabolism , Male , Transforming Growth Factor beta1/metabolism , Female , Diamines , Tetrahydronaphthalenes , Thiazoles , Valine/analogs & derivatives
17.
Clin Cancer Res ; 30(11): 2545-2557, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38551501

ABSTRACT

PURPOSE: Medulloblastoma (MB), the most common childhood malignant brain tumor, has a poor prognosis in about 30% of patients. The current standard of care, which includes surgery, radiation, and chemotherapy, is often responsible for cognitive, neurologic, and endocrine side effects. We investigated whether chimeric antigen receptor (CAR) T cells directed toward the disialoganglioside GD2 can represent a potentially more effective treatment with reduced long-term side effects. EXPERIMENTAL DESIGN: GD2 expression was evaluated on primary tumor biopsies of MB children by flow cytometry. GD2 expression in MB cells was also evaluated in response to an EZH2 inhibitor (tazemetostat). In in vitro and in vivo models, GD2+ MB cells were targeted by a CAR-GD2.CD28.4-1BBζ (CAR.GD2)-T construct, including the suicide gene inducible caspase-9. RESULTS: GD2 was expressed in 82.68% of MB tumors. The SHH and G3-G4 subtypes expressed the highest levels of GD2, whereas the WNT subtype expressed the lowest. In in vitro coculture assays, CAR.GD2 T cells were able to kill GD2+ MB cells. Pretreatment with tazemetostat upregulated GD2 expression, sensitizing GD2dimMB cells to CAR.GD2 T cells cytotoxic activity. In orthotopic mouse models of MB, intravenously injected CAR.GD2 T cells significantly controlled tumor growth, prolonging the overall survival of treated mice. Moreover, the dimerizing drug AP1903 was able to cross the murine blood-brain barrier and to eliminate both blood-circulating and tumor-infiltrating CAR.GD2 T cells. CONCLUSIONS: Our experimental data indicate the potential efficacy of CAR.GD2 T-cell therapy. A phase I/II clinical trial is ongoing in our center (NCT05298995) to evaluate the safety and therapeutic efficacy of CAR.GD2 therapy in high-risk MB patients.


Subject(s)
Gangliosides , Immunotherapy, Adoptive , Medulloblastoma , Receptors, Chimeric Antigen , Xenograft Model Antitumor Assays , Humans , Medulloblastoma/therapy , Medulloblastoma/immunology , Medulloblastoma/pathology , Medulloblastoma/genetics , Medulloblastoma/metabolism , Animals , Mice , Gangliosides/metabolism , Gangliosides/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Cell Line, Tumor , Child , Female , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cerebellar Neoplasms/therapy , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Morpholines/pharmacology , Male , Child, Preschool , Benzamides , Biphenyl Compounds , Pyridones
18.
Int J Mol Sci ; 14(12): 24154-68, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24351808

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent, chronic liver diseases, worldwide. It is a multifactorial disease caused by complex interactions between genetic, epigenetic and environmental factors. Recently, several microRNAs, some of which epigenetically regulated, have been found to be up- and/or down-regulated during NAFLD development. However, in NAFLD, the essential role of the Polycomb Group protein Enhancer of Zeste Homolog 2 (EZH2), which controls the epigenetic silencing of specific genes and/or microRNAs by trimethylating Lys27 on histone H3, still remains unknown. In this study, we demonstrate that the nuclear expression/activity of the EZH2 protein is down-regulated both in livers from NAFLD rats and in the free fatty acid-treated HepG2. The drop in EZH2 is inversely correlated with: (i) lipid accumulation; (ii) the expression of pro-inflammatory markers including TNF-α and TGF-ß; and (iii) the expression of miR-200b and miR-155. Consistently, the pharmacological inhibition of EZH2 by 3-Deazaneplanocin A (DZNep) significantly reduces EZH2 expression/activity, while it increases lipid accumulation, inflammatory molecules and microRNAs. In conclusion, the results of this study suggest that the defective activity of EZH2 can enhance the NAFLD development by favouring steatosis and the de-repression of the inflammatory genes and that of specific microRNAs.


Subject(s)
Down-Regulation , Fatty Liver/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Disease Models, Animal , Down-Regulation/drug effects , Enhancer of Zeste Homolog 2 Protein , Fatty Liver/metabolism , Fatty Liver/pathology , Hep G2 Cells , Histones/metabolism , Humans , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease , Oleic Acid/metabolism , Palmitic Acid/metabolism , Polycomb Repressive Complex 2/deficiency , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
19.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102140

ABSTRACT

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Subject(s)
Rhabdomyosarcoma , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Transcription Factors , Cell Transformation, Neoplastic , Cell Differentiation
20.
Obes Surg ; 32(1): 82-89, 2022 01.
Article in English | MEDLINE | ID: mdl-34546515

ABSTRACT

PURPOSE: Paediatric obesity is a well-known risk factor for metabolic-associated fatty liver disease (MAFLD). The aim of this study was to evaluate the effects of laparoscopic sleeve gastrectomy (LSG) on the levels of total homocysteine (tHcy) and total glutathione (tGSH) plasma levels in children with MAFLD. MATERIAL AND METHODS: Twenty-four children with severe obesity who underwent LSG were included in the study. The metabolic parameters, systemic inflammatory markers, one-carbon metabolism products, ultrasound and histological improvement were evaluated at baseline (T0M) and after 12 months from LSG (T12M). RESULTS: The patients exhibited a significant amelioration of several metabolic parameters at T12M. A significant reduction of steatosis was observed at ultrasound (from 72.7% of moderate-severe grade to 0% severe steatosis), accompanied by a statistically significant improvement of ballooning, portal and lobular inflammation and fibrosis. A statistically significant decrease of tumour necrosis factor circulating levels was also observed (T0M median = 290.3, IQR = 281.0-317.0 pg/mL; T12M median = 260.4, IQR = 240.0-279.0 pg/mL; p < 0.0001). After 12 months from LSG, a significant increase of mean plasma levels of tHcy(T0M mean = 15.7 ± 4.1 µmol/L; T12M mean = 21.1 ± 9.3 µmol/L; p = 0.0146) was also observed. The increase of tHcy showed no causal link with the improvement of MAFLD-related inflammatory, metabolic and histological pattern. CONCLUSION: LSG in children with obesity induces an improvement of MAFLD-related metabolic derangement and liver damage, but also a mild hyperhomocysteinemia that should be avoided to prevent cardiovascular risk.


Subject(s)
Laparoscopy , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Pediatric Obesity , Child , Gastrectomy/adverse effects , Glutathione , Homocysteine , Humans , Laparoscopy/adverse effects , Non-alcoholic Fatty Liver Disease/complications , Obesity, Morbid/surgery , Pediatric Obesity/complications , Pediatric Obesity/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL