Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Sports Sci ; 41(20): 1852-1867, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38234241

ABSTRACT

Decision-making in team sports necessitates monitoring multiple performers located at different distances (i.e., viewing eccentricities) from a critical information source. The processing of peripheral information is generally impaired under anxiety and when responding to stimuli located at larger eccentricities. These hypotheses have not been sufficiently tested in dynamic performance environments. We examined how pressure and eccentricities affect decision-making and visual behaviour in 4v4 basketball defensive scenarios using a head mounted display. Experienced players monitored plays from the first-person perspective (centre position) and made defensive steps towards opponents threatening the basket from different eccentricities under low- and high-pressure. To tax working memory, participants simultaneously performed a backward counting task. Players responded slower and with lower accuracy to opponents at larger eccentricities. Players mostly fixated on the ball-carrier, but over 50% of fixations were located on peripheral players, indicating that information in the periphery must be frequently updated with foveal vision (i.e., pivot strategy). When pressured, participants increased mental effort and improved counting performance; however, gaze behaviour and decision-making were relatively unaffected. Findings suggest that basketball players respond more quickly to opponents positioned at lower compared to higher eccentricities at the cost of impaired responses to opponents in the periphery.


Subject(s)
Basketball , Decision Making , Humans , Visual Perception , Vision, Ocular , Basketball/physiology
2.
Exp Brain Res ; 239(6): 2001-2014, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33909113

ABSTRACT

Scientists have predominantly assessed anxiety's impact on postural control when anxiety is created by the need to maintain balance (e.g., standing at heights). In the present study, we investigate how postural control and its mechanisms (i.e., vestibular function) are impacted when anxiety is induced by an unrelated task (playing a video game). Additionally, we compare watching and playing a game to dissociate postural adaptations caused by increased engagement rather than anxiety. Participants [N = 25, female = 8, M (SD) age = 23.5 (3.9)] held a controller in four standing conditions of varying surface compliance (firm or foam) and with or without peripheral visual occlusion across four blocks: quiet standing (baseline), watching the game with a visual task (watching), playing the game (low anxiety), and playing under anxiety (high anxiety). We measured sway area, sway frequency, root mean square (RMS) sway, anxiety, and mental effort. Limited sway differences emerged between anxiety blocks (only sway area on firm surface). The watching block elicited more sway than baseline (greater sway area and RMS sway; lower sway frequency), and the low anxiety block elicited more sway than the watching block (greater sway area and RMS sway; higher sway frequency). Mental effort was associated with increased sway area and RMS sway. Our findings indicate that anxiety, when generated through competition, has minimal impact on postural control. Postural control primarily adapts according to mental effort and more cognitively engaging task constraints (i.e., playing versus watching). We speculate increased sway reflects the prioritization of attention to game performance over postural control.


Subject(s)
Video Games , Anxiety , Cognition , Female , Humans , Postural Balance , Standing Position
3.
Neuropsychologia ; 191: 108718, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37939872

ABSTRACT

During biological motion perception, individuals with perceptual experience learn to use more global processing, simultaneously extracting information from multiple body segments. Less experienced observers may use more local processing of individual body segments. The parietal lobe (e.g., alpha and beta power) has been shown to be critical to global and local static stimulus perception. Therefore, in this paper, we examined how skill impacts motion processing by assessing behavioral and neural responses to degrading global or local motion information for soccer penalty kicks. Skilled (N = 21) and less skilled (N = 19) soccer players anticipated temporally occluded videos of penalty kicks under normal, blurred (degraded local information), or spatially occluded (hips-only; degraded global information) viewing conditions. EEG was used to measure parietal alpha and beta power. Skilled players outperformed less skilled players, albeit both skill groups were less accurate in the blurred and hips-only conditions. Skilled performers showed significant decreases in bilateral parietal beta power in the hips-only condition, suggesting a greater reliance on global motion information under normal viewing conditions. Additionally, the hips-only condition elicited significantly greater beta relative to alpha power (beta - alpha), lower beta power, and lower alpha power than the control condition for both skill groups, suggesting spatial occlusion elicited a shift towards more local processing. Our novel findings demonstrate that skill and experience impact how motion is processed.


Subject(s)
Motion Perception , Soccer , Humans , Motion Perception/physiology , Learning , Motion , Anticipation, Psychological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL