Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
Add more filters

Publication year range
1.
PLoS Biol ; 22(8): e3002775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39178318

ABSTRACT

Germ cell apoptosis in Caenorhabditis elegans hermaphrodites is a physiological process eliminating around 60% of all cells in meiotic prophase to maintain tissue homeostasis. In contrast to programmed cell death in the C. elegans soma, the selection of germ cells undergoing apoptosis is stochastic. By live-tracking individual germ cells at the pachytene stage, we found that germ cells smaller than their neighbors are selectively eliminated through apoptosis before differentiating into oocytes. Thus, cell size is a strong predictor of physiological germ cell death. The RAS/MAPK and ECT/RHO/ROCK pathways together regulate germ cell size by controlling actomyosin constriction at the apical rachis bridges, which are cellular openings connecting the syncytial germ cells to a shared cytoplasmic core. Enhancing apical constriction reduces germ cell size and increases the rate of cell death while inhibiting the actomyosin network in the germ cells prevents their death. We propose that actomyosin contractility at the rachis bridges of the syncytial germ cells amplifies intrinsic disparities in cell size. Through this mechanism, the animals can adjust the balance between physiological germ cell death and oocyte differentiation.


Subject(s)
Actomyosin , Apoptosis , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Germ Cells , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Actomyosin/metabolism , Germ Cells/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Oocytes/metabolism , Cell Size , Cell Differentiation
2.
Proc Natl Acad Sci U S A ; 121(31): e2403585121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042685

ABSTRACT

Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.


Subject(s)
Cellulose , Directed Molecular Evolution , Cellulose/metabolism , Cellulose/biosynthesis , Directed Molecular Evolution/methods , Acetobacteraceae/metabolism , Acetobacteraceae/genetics , Phenotype , Mutation
3.
Nat Methods ; 20(10): 1479-1482, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37749213

ABSTRACT

Probing non-equilibrium dynamics with single-molecule spectroscopy is important for dissecting biomolecular mechanisms. However, existing microfluidic rapid-mixing systems for this purpose are incompatible with surface-adhesive biomolecules, exhibit undesirable flow dispersion and are often demanding to fabricate. Here we introduce droplet-based microfluidic mixing for single-molecule spectroscopy to overcome these limitations in a wide range of applications. We demonstrate its robust functionality with binding kinetics of even very surface-adhesive proteins on the millisecond timescale.

4.
Development ; 149(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34982813

ABSTRACT

During Caenorhabditis elegans vulval development, the uterine anchor cell (AC) first secretes an epidermal growth factor (EGF) to specify the vulval cell fates and then invades the underlying vulval epithelium. By doing so, the AC establishes direct contact with the invaginating primary vulF cells and attaches the developing uterus to the vulva. The signals involved and the exact sequence of events joining these two organs are not fully understood. Using a conditional let-23 EGF receptor (EGFR) allele along with novel microfluidic short- and long-term imaging methods, we discovered a specific function of the EGFR in the AC during vulval lumen morphogenesis. Tissue-specific inactivation of let-23 in the AC resulted in imprecise alignment of the AC with the primary vulval cells, delayed AC invasion and disorganized adherens junctions at the contact site forming between the AC and the dorsal vulF toroid. We propose that EGFR signaling, activated by a reciprocal EGF cue from the primary vulval cells, positions the AC at the vulval midline, guides it during invasion and assembles a cytoskeletal scaffold organizing the adherens junctions that connect the developing uterus to the dorsal vulF toroid. Thus, EGFR signaling in the AC ensures the precise alignment of the two developing organs.


Subject(s)
ErbB Receptors/metabolism , Morphogenesis , Signal Transduction , Vulva/metabolism , Adherens Junctions/metabolism , Animals , Caenorhabditis elegans , Cytoskeleton/metabolism , Epidermal Growth Factor/metabolism , Female , Vulva/cytology , Vulva/growth & development
5.
Anal Chem ; 96(37): 14809-14818, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39231502

ABSTRACT

Cell-cell interactions are essential for the proper functioning of multicellular organisms. For example, T cells interact with antigen-presenting cells (APCs) through specific T-cell receptor (TCR)-antigen interactions during an immune response. Fluorescence-activated droplet sorting (FADS) is a high-throughput technique for efficiently screening cellular interaction events. Unfortunately, current droplet sorting instruments have significant limitations, most notably related to analytical throughput and complex operation. In contrast, commercial fluorescence-activated cell sorters offer superior speed, sensitivity, and multiplexing capabilities, although their use as droplet sorters is poorly defined and underutilized. Herein, we present a universally applicable and simple-to-implement workflow for generating double emulsions and performing multicolor cell sorting using a commercial FACS instrument. This workflow achieves a double emulsion detection rate exceeding 90%, enabling multicellular encapsulation and high-throughput immune cell activation sorting for the first time. We anticipate that the presented droplet sorting strategy will benefit cell biology laboratories by providing access to an advanced microfluidic toolbox with minimal effort and cost investment.


Subject(s)
Emulsions , Flow Cytometry , Flow Cytometry/methods , Emulsions/chemistry , Humans , Fluorescent Dyes/chemistry , T-Lymphocytes/cytology , Color , Cell Separation/methods , Animals
6.
Anal Chem ; 96(25): 10443-10450, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38864271

ABSTRACT

Due to their ability to selectively target pathogen-specific nucleic acids, CRISPR-Cas systems are increasingly being employed as diagnostic tools. "One-pot" assays that combine nucleic acid amplification and CRISPR-Cas systems (NAAT-CRISPR-Cas) in a single step have emerged as one of the most popular CRISPR-Cas biosensing formats. However, operational simplicity comes at a cost, with one-pot assays typically being less sensitive than corresponding two-step NAAT-CRISPR-Cas assays and often failing to detect targets at low concentrations. It is thought that these performance reductions result from the competition between the two enzymatic processes driving the assay, namely, Cas-mediated cis-cleavage and polymerase-mediated amplification of the target DNA. Herein, we describe a novel one-pot RPA-Cas12a assay that circumvents this issue by leveraging in situ complexation of the target-specific sgRNA and Cas12a to purposefully limit the concentration of active Cas12a during the early stages of the assay. Using a clinically relevant assay against a DNA target for HPV-16, we show how this in situ format reduces competition between target cleavage and amplification and engenders significant improvements in detection limit when compared to the traditional one-pot assay format, even in patient-derived samples. Finally, to gain further insight into the assay, we use experimental data to formulate a mechanistic model describing the competition between the Cas enzyme and nucleic acid amplification. These findings suggest that purposefully limiting cis-cleavage rates of Cas proteins is a viable strategy for improving the performance of one-pot NAAT-CRISPR-Cas assays.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , CRISPR-Associated Proteins/metabolism , RNA, Guide, CRISPR-Cas Systems/metabolism , Humans , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Nucleic Acid Amplification Techniques , Replication Protein A/metabolism , Biosensing Techniques/methods
7.
Development ; 148(18)2021 07 15.
Article in English | MEDLINE | ID: mdl-34170296

ABSTRACT

Several microfluidic-based methods for Caenorhabditis elegans imaging have recently been introduced. Existing methods either permit imaging across multiple larval stages without maintaining a stable worm orientation, or allow for very good immobilization but are only suitable for shorter experiments. Here, we present a novel microfluidic imaging method that allows parallel live-imaging across multiple larval stages, while maintaining worm orientation and identity over time. This is achieved through an array of microfluidic trap channels carefully tuned to maintain worms in a stable orientation, while allowing growth and molting to occur. Immobilization is supported by an active hydraulic valve, which presses worms onto the cover glass during image acquisition only. In this way, excellent quality images can be acquired with minimal impact on worm viability or developmental timing. The capabilities of the devices are demonstrated by observing the hypodermal seam and P-cell divisions and, for the first time, the entire process of vulval development from induction to the end of morphogenesis. Moreover, we demonstrate feasibility of on-chip RNAi by perturbing basement membrane breaching during anchor cell invasion.


Subject(s)
Caenorhabditis elegans/growth & development , Larva/growth & development , Microfluidics/methods , Animals , Lab-On-A-Chip Devices
8.
Small ; 20(38): e2401148, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38801400

ABSTRACT

Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.


Subject(s)
Microfluidics , Paper , Microfluidics/methods , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
9.
Small ; 20(35): e2301074, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38659180

ABSTRACT

The coating of filter media with silver is typically achieved by chemical deposition and aerosol processes. Whilst useful, such approaches struggle to provide uniform coating and are prone to blockage. To address these issues, an in situ method for coating glass fibers is presented via the dopamine-mediated electroless metallization method, yielding filters with low air resistance and excellent antibacterial performance. It is found that the filtration efficiency of the filters is between 94 and 97% and much higher than that of silver-coated filters produced using conventional dipping methods (85%). Additionally, measured pressure drops ranged between 100 and 150 Pa, which are lower than those associated with dipped filters (171.1 Pa). Survival rates of Escherichia coli and Bacillus subtilis bacteria exposed to the filters decreased to 0 and 15.7%±1.49, respectively after 2 h, with no bacteria surviving after 6 h. In contrast, survival rates of E. coli and B. subtilis bacteria on the uncoated filters are 92.5% and 89.5% after 6 h. Taken together, these results confirm that the in situ deposition of silver onto fiber surfaces effectively reduces pore clogging, yielding low air resistance filters that can be applied for microbial filtration and inhibition in a range of environments.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Dopamine , Escherichia coli , Glass , Silver , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glass/chemistry , Dopamine/chemistry , Dopamine/pharmacology , Escherichia coli/drug effects , Bacillus subtilis/drug effects , Filtration/methods
10.
Langmuir ; 40(12): 6304-6316, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38494636

ABSTRACT

Freezing and freeze-drying processes are commonly used to extend the shelf life of drug products and to ensure their safety and efficacy upon use. When designing a freezing process, it is beneficial to characterize multiple physicochemical properties of the formulation, such as nucleation rate, crystal growth rate, temperature and concentration of the maximally freeze-concentrated solution, and melting point. Differential scanning calorimetry has predominantly been used in this context but does have practical limitations and is unable to quantify the kinetics of crystal growth and nucleation. In this work, we introduce a microfluidic technique capable of quantifying the properties of interest and use it to investigate aqueous sucrose solutions of varying concentration. Three freeze-thaw cycles were performed on droplets with 75-µm diameters at cooling and warming rates of 1 °C/min. During each cycle, the visual appearance of the droplets was optically monitored as they experienced nucleation, crystal growth, formation of the maximally freeze-concentrated solution, and melting. Nucleation and crystal growth manifested as increases in droplet brightness during the cooling phase. Heating was associated with a further increase as the temperature associated with the maximally freeze-concentrated solution was approached. Heating beyond the melting point corresponded to a decrease in brightness. Comparison with the literature confirmed the accuracy of the new technique while offering new visual data on the maximally freeze-concentrated solution. Thus, the microfluidic technique presented here may serve as a complement to differential scanning calorimetry in the context of freezing and freeze-drying. In the future, it could be applied to a plethora of mixtures that undergo such processing, whether in pharmaceutics, food production, or beyond.

11.
Chem Soc Rev ; 52(24): 8531-8579, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37882143

ABSTRACT

Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , Respiratory Aerosols and Droplets , COVID-19/diagnosis , COVID-19/prevention & control , SARS-CoV-2
12.
Angew Chem Int Ed Engl ; 63(17): e202401080, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38421342

ABSTRACT

The role of monoclonal antibodies as vehicles to deliver payloads has evolved as a powerful tool in cancer therapy in recent years. The clinical development of therapeutic antibody conjugates with precise payloads holds great promise for targeted therapeutic interventions. The use of affinity-peptide mediated functionalization of native off-the-shelf antibodies offers an effective approach to selectively modify IgG antibodies with a drug-antibody ratio (DAR) of 2. Here, we report the traceless, peptide-directed attachment of two hydroxylamines to native IgGs followed by chemoselective potassium acyltrifluoroborate (KAT) ligation with quinolinium acyltrifluoroborates (QATs), which provide enhanced ligation rates with hydroxylamines under physiological conditions. By applying KAT ligation to the modified antibodies, conjugation of small molecules, proteins, and oligonucleotides to off-the-shelf IgGs proceeds efficiently, in good yields, and with simultaneous cleavage of the affinity peptide-directing moiety.


Subject(s)
Immunoglobulin G , Lysine , Hydroxylamines , Peptides/chemistry , Antibodies, Monoclonal/chemistry
13.
Angew Chem Int Ed Engl ; : e202409610, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087463

ABSTRACT

Recent decades have seen a dramatic increase in the commercial use of biocatalysts, transitioning from energy-intensive traditional chemistries to more sustainable methods. Current enzyme engineering techniques, such as directed evolution, require the generation and testing of large mutant libraries to identify optimized variants. Unfortunately, conventional screening methods are unable to screen such large libraries in a robust and timely manner. Droplet-based microfluidic systems have emerged as a powerful high-throughput tool for library screening at kilohertz rates. Unfortunately, almost all reported systems are based on fluorescence detection, restricting their use to a limited number of enzyme types that naturally convert fluorogenic substrates or require the use of surrogate substrates. To expand the range of enzymes amenable to evolution using droplet-based microfluidic systems, we present an absorbance-activated droplet sorter that allows of droplet sorting at kilohertz rates without the need for optical monitoring of the microfluidic system. To demonstrate the utility of the sorter, we rapidly screen a 105-member aldehyde dehydrogenase library towards D-glyceraldehyde using a NADH mediated coupled assay that generates WST-1 formazan as the colorimetric product. We successfully identify a variant with a 51% improvement in catalytic efficiency and a significant increase in overall activity across a broad substrate spectrum.

14.
Anal Chem ; 95(39): 14526-14532, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37733469

ABSTRACT

We present a portable imaging flow cytometer comprising a smartphone, a small-footprint optical framework, and a PDMS-based microfluidic device. Flow cytometric analysis is performed in a sheathless manner via elasto-inertial focusing with a custom-written Android program, integrating a graphical user interface (GUI) that provides a high degree of user control over image acquisition. The proposed system offers two different operational modes. First, "post-processing" mode enables particle/cell sizing at throughputs of up to 67 000 particles/s. Alternatively, "real-time" mode allows for integrated cell/particle classification with machine learning at throughputs of 100 particles/s. To showcase the efficacy of our platform, polystyrene particles are accurately enumerated within heterogeneous populations using the post-processing mode. In real-time mode, an open-source machine learning algorithm is deployed within a custom-developed Android application to classify samples containing cells of similar size but with different morphologies. The flow cytometer can extract high-resolution bright-field images with a spatial resolution <700 nm using the developed machine learning-based algorithm, achieving classification accuracies of 97% and 93% for Jurkat and EL4 cells, respectively. Our results confirm that the smartphone imaging flow cytometer (sIFC) is capable of both enumerating single particles in flow and identifying morphological features with high resolution and minimal hardware.


Subject(s)
Diagnostic Imaging , Smartphone , Flow Cytometry/methods , Algorithms , Single-Cell Analysis
15.
Chimia (Aarau) ; 77(5): 312-318, 2023 May 31.
Article in English | MEDLINE | ID: mdl-38047827

ABSTRACT

Microfluidic methods for the synthesis of nanomaterials allow the generation of high-quality products with outstanding structural, electronic and optical properties. At a fundamental level, this is engendered by the ability to control both heat and mass transfer in a rapid and precise manner, but also by the facile integration of in-line characterization tools and machine learning algorithms. Such integrated platforms provide for exquisite control over material properties during synthesis, accelerate the optimization of electronic and optical properties and bestow new insights into the optoelectronic properties of nanomaterials. Herein, we present a brief perspective on the role that microfluidic technologies can play in nanomaterial synthesis, with a particular focus on recent studies that incorporate in-line optical characterization and machine learning. We also consider the importance and challenges associated with integrating additional functional components within experimental workflows and the upscaling of microfluidic platforms for production of industrial-scale quantities of nanomaterials.

16.
Anal Chem ; 94(31): 10967-10975, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35895913

ABSTRACT

We present a method for monitoring spatially localized antigen-antibody binding events on physiologically relevant substrates (cell and tissue sections) using fluorescence lifetime imaging. Specifically, we use the difference between the fluorescence decay times of fluorescently tagged antibodies in free solution and in the bound state to track the bound fraction over time and hence deduce the binding kinetics. We make use of a microfluidic probe format to minimize the mass transport effects and localize the analysis to specific regions of interest on the biological substrates. This enables measurement of binding constants (kon) on surface-bound antigens and on cell blocks using model biomarkers. Finally, we directly measure p53 kinetics with differential biomarker expression in ovarian cancer tissue sections, observing that the degree of expression corresponds to the changes in kon, with values of 3.27-3.50 × 103 M-1 s-1 for high biomarker expression and 2.27-2.79 × 103 M-1 s-1 for low biomarker expression.


Subject(s)
Ovarian Neoplasms , Antibodies , Antigen-Antibody Reactions , Female , Humans , Kinetics , Optical Imaging
17.
Anal Chem ; 94(48): 16675-16684, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36395420

ABSTRACT

Protein folding, unfolding, and aggregation are important in a variety of biological processes and intimately linked to "protein misfolding diseases". The ability to perform experiments at different temperatures allows the extraction of important information regarding the kinetics and thermodynamics of such processes. Unfortunately, conventional stopped-flow methods are difficult to implement, generate limited information, and involve complex sample handling. To address this issue, we present a temperature-controlled droplet-based microfluidic platform that allows measurement of reaction kinetics on millisecond to second timescales and at temperatures between ambient and 90 °C. The utility of the microfluidic platform for measuring fast biomolecular kinetics at high temperatures is showcased through the investigation of the unfolding kinetics of haloalkane dehalogenases and the elongation of fibrils composed of the amyloid ß peptide associated with Alzheimer's disease. In addition, a deep-ultraviolet (UV) fluorescence microscope was developed for the on-chip recording of protein intrinsic fluorescence spectrum originating from aromatic amino acid residues. We envision that the developed optofluidic platform will find wide applicability in the analysis of biological processes, such as protein refolding and phase separation.


Subject(s)
Amyloid beta-Peptides , Microfluidics , Protein Denaturation , Temperature , Kinetics , Protein Folding , Thermodynamics
18.
Small ; 18(46): e2202606, 2022 11.
Article in English | MEDLINE | ID: mdl-36180409

ABSTRACT

Liquid-liquid phase separation of polymer and protein solutions is central in many areas of biology and material sciences. Here, an experimental and theoretical framework is provided to investigate the thermodynamics and kinetics of liquid-liquid phase separation in volumes comparable to cells. The strategy leverages droplet microfluidics to accurately measure the volume of the dense phase generated by liquid-liquid phase separation of solutions confined in micro-sized compartments. It is shown that the measurement of the volume fraction of the dense phase at different temperatures allows the evaluation of the binodal lines that determine the coexistence region of the two phases in the temperature-concentration phase diagram. By applying a thermodynamic model of phase separation in finite volumes, it is further shown that the platform can predict and validate kinetic barriers associated with the formation of a dense droplet in a parent dilute phase, therefore connecting thermodynamics and kinetics of liquid-liquid phase separation.


Subject(s)
Microfluidics , Polymers , Kinetics , Thermodynamics , Temperature
19.
Phys Chem Chem Phys ; 24(46): 28213-28221, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36413087

ABSTRACT

To understand the crystallization of aqueous solutions in the atmosphere, biological specimens, or pharmaceutical formulations, the rate at which ice nucleates from pure liquid water must be quantified. There is still an orders-of-magnitude spread in the homogeneous nucleation rate of water measured using different instruments, with the most important source of uncertainty being that of the measured temperature. Microfluidic platforms can generate hundreds to thousands of monodisperse water-in-oil droplets, unachievable by most other techniques. However, most microfluidic devices previously used to quantify homogeneous ice nucleation rates have reported high temperature uncertainties, between ±0.3 and ±0.7 K. We use the recently developed Microfluidic Ice Nuclei Counter Zurich (MINCZ) to observe the freezing of spherical water droplets with two diameters (75 and 100 µm) at two cooling rates (1 and 0.1 K min-1). By varying both droplet volume and cooling rate, we were able to probe a temperature range of 236.5-239.3 K with an accuracy of ±0.2 K, providing reliable data where previously determined nucleation rates suffered from large uncertainties and inconsistencies, especially at temperatures above 238 K. From these data and from Monte Carlo simulations, we demonstrate the importance of obtaining a sufficiently large dataset so that underlying nucleation rates are not overestimated at higher temperatures. Finally, we obtain new parameters for a previous parameterisation by fitting to our newly measured nucleation rates, enabling its use in applications where ice formation needs to be predicted.


Subject(s)
Ice , Water , Freezing , Phase Transition , Cold Temperature
20.
Chimia (Aarau) ; 76(7-8): 661-668, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-38071633

ABSTRACT

Circulating tumor cells (CTCs), secreted from primary and metastatic malignancies, hold a wealth of essential diagnostic and prognostic data for multiple cancers. Significantly, the information contained within these cells may hold the key to understanding cancer metastasis, both individually and fundamentally. Accordingly, developing ways to identify, isolate and interrogate CTCs plays an essential role in modern cancer research. Unfortunately, CTCs are typically present in the blood in vanishingly low titers and mixed with other blood components, making their isolation and analysis extremely challenging. Herein, we report the design, fabrication and optimization of a microfluidic device capable of automatically isolating CTCs from whole blood. This is achieved in two steps, via the passive viscoelastic separation of CTCs and white blood cells (WBCs) from red blood cells (RBCs), and subsequent active magnetophoretic separation of CTCs from WBCs. We detail the specific geometries required to balance the elastic and inertial forces required for successful passive separation of RBCs, and the use of computational fluid dynamics (CFD) to optimize active magnetophoretic separation. We subsequently describe the use of magnetic biosilica frustules, extracted from Chaetoceros sp. diatoms, to fluorescently tag CTCs and facilitate magnetic isolation. Finally, we use our microfluidic platform to separate HepG2-derived CTCs from whole blood, demonstrating exceptional CTC recovery (94.6%) and purity (89.7%).

SELECTION OF CITATIONS
SEARCH DETAIL