Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Publication year range
1.
Brain Behav Immun ; 120: 82-97, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777284

ABSTRACT

Fever plays an indispensable role in host defense processes and is used as a rapid index of infection severity. Unfortunately, there are also substantial individual differences in fever reactions with biological sex, immunological history, and other demographic variables contributing to adverse outcomes of infection. The present series of studies were designed to test the hypothesis that a history of adolescent alcohol misuse may be a latent experiential variable that determines fever severity using polyinosinic:polycytidylic acid (poly I:C), a synthetic form of double-stranded RNA that mimics a viral challenge. Adult male and female Sprague Dawley rats were injected with 0 (saline) or 4 mg/kg poly I:C to first establish sex differences in fever sensitivity in Experiment 1 using implanted radiotelemetry devices for remote tracking. In Experiments 2 and 3, adolescent males and females were exposed to either water or ethanol (0 or 4 g/kg intragastrically, 3 days on, 2 days off, ∼P30-P50, 4 cycles/12 exposures total). After a period of abstinence, adult rats (∼P80-96) were then challenged with saline or poly I:C, and fever induction and maintenance were examined across a prolonged time course of 8 h using implanted probes. In Experiments 4 and 5, adult male and female subjects with a prior history of adolescent water or adolescent intermittent ethanol (AIE) were given saline or poly I:C, with tissue collected for protein and gene expression analysis at 5 h post-injection. Initial sex differences in fever sensitivity were minimal in response to the 4 mg/kg dose of poly I:C in ethanol-naïve rats. AIE exposed males injected with poly I:C showed a sensitized fever response as well as enhanced TLR3, IκBα, and IL-1ß expression in the nucleus of the solitary tract. Other brain regions related to thermoregulation and peripheral organs such as spleen, liver, and blood showed generalized immune responses to poly I:C, with no differences evident between AIE and water-exposed males. In contrast, AIE did not affect responsiveness to poly I:C in females. Thus, the present findings suggest that adolescent binge drinking may produce sex-specific and long-lasting effects on fever reactivity to viral infection, with preliminary evidence suggesting that these effects may be due to centrally-mediated changes in fever regulation rather than peripheral immunological mechanisms.

2.
Dev Psychobiol ; 66(1): e22442, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38131243

ABSTRACT

It has been shown that ethanol-induced interleukin-6 (IL-6) in adult male Sprague-Dawley rats was sensitized by environmental stimuli paired with ethanol and was accompanied by a conditioned increase in corticosterone (CORT). Adolescent males showed ethanol-induced IL-6 conditioning more readily than adults. The present studies examined whether female adolescents display IL-6 conditioning and whether adolescents of either sex show CORT conditioning. Male and female (N = 212, n = 6-10) adolescent (postnatal day 33-40) rats were given ethanol (2 g/kg intraperitoneal injection; the unconditioned stimulus), either paired with a lavender-scented novel context (the conditioned stimulus) or explicitly unpaired from context. Rats were tested in the context without ethanol and brains/blood were collected. Adolescent females did not show signs of neuroimmune (Experiment 1) or CORT conditioning (Experiments 2-4). Paired males showed enhanced CORT to the scented context relative to unpaired counterparts when the interoceptive cue of a saline injection was used on test day (Experiment 2). Experiment 5 used a delayed conditioning procedure and showed that male paired adolescents showed significantly higher CORT in response to context, showing that classically conditioned CORT response was precipitated by environmental cues alone. These findings indicate that adolescent males may be predisposed to form conditioned associations between alcohol and environmental cues, contributing to adolescent vulnerability to long-lasting ethanol effects.


Subject(s)
Corticosterone , Ethanol , Rats , Male , Female , Animals , Rats, Sprague-Dawley , Corticosterone/pharmacology , Ethanol/pharmacology , Cues , Interleukin-6
3.
Stress ; 26(1): 2239366, 2023 11.
Article in English | MEDLINE | ID: mdl-37529896

ABSTRACT

Early-life attachment disruption appears to sensitize neuroinflammatory signaling to increase later vulnerability for stress-related mental disorders, including depression. How stress initiates this process is unknown, but studies with adult rats and mice suggest sympathetic nervous system activation and/or cortisol elevations during the early stress are key. Guinea pig pups isolated from their mothers exhibit an initial active behavioral phase characterized by anxiety-like vocalizing. This is followed by inflammatory-dependent depressive-like behavior and fever that sensitize on repeated isolation. Using strategies that have been successful in adult studies, we assessed whether sympathetic nervous system activity and cortisol contributed to the sensitization process in guinea pig pups. In Experiment 1, the adrenergic agonist ephedrine (3 or 10 mg/kg), either alone or with cortisol (2.5 mg/kg), did not increase depressive-like behavior or fever during initial isolation the following day as might have been expected to if this stimulation was sufficient to account for the sensitization process. In Experiment 2, both depressive-like behavior and fever sensitized with repeated isolation, but beta-adrenergic receptor blockade with propranolol (10 or 20 mg/kg) did not affect either of these responses or their sensitization. The high dose of propranolol did, however, reduce vocalizing. These results suggest sympathetic nervous system activation is neither necessary nor sufficient to induce the presumptive neuroinflammatory signaling underlying sensitization of depressive-like behavioral or febrile responses in developing guinea pigs. Thus, processes mediating sensitization of neuroinflammatory-based depressive-like behavior following early-life attachment disruption in this model appear to differ from those previously found to underlie neuroinflammatory priming in adults.


Subject(s)
Hydrocortisone , Propranolol , Animals , Guinea Pigs , Mice , Rats , Propranolol/pharmacology , Stress, Psychological , Behavior, Animal/physiology , Fever , Receptors, Adrenergic
4.
Am J Drug Alcohol Abuse ; 49(3): 269-282, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37148274

ABSTRACT

Background: The last decade has witnessed a surge of findings implicating neuroinflammatory processes as pivotal players in substance use disorders. The directionality of effects began with the expectation that the neuroinflammation associated with prolonged substance misuse contributes to long-term neuropathological consequences. As the literature grew, however, it became evident that the interactions between neuroinflammatory processes and alcohol and drug intake were reciprocal and part of a pernicious cycle in which disease-relevant signaling pathways contributed to an escalation of drug intake, provoking further inflammation-signaling and thereby exacerbating the neuropathological effects of drug misuse.Objectives: The goal of this review and its associated special issue is to provide an overview of the emergent findings relevant to understanding these reciprocal interactions. The review highlights the importance of preclinical and clinical studies in testing and validation of immunotherapeutics as viable targets for curtailing substance use and misuse, with a focus on alcohol misuse.Methods: A narrative review of the literature on drug and neuroinflammation was conducted, as well as articles published in this Special Issue on Alcohol- and Drug-induced Neuroinflammation: Insights from Pre-clinical Models and Clinical Research.Results: We argue that (a) demographic variables and genetic background contribute unique sensitivity to drug-related neuroinflammation; (b) co-morbidities between substance use disorders and affect dysfunction may share common inflammation-related signatures that predict the efficacy of immunotherapeutic drugs; and (c) examination of polydrug interactions with neuroinflammation is a critical area where greater research emphasis is needed.Conclusions: This review provides an accessible and example-driven review of the relationship between drug misuse, neuroinflammatory processes, and their resultant neuropathological outcomes.


Subject(s)
Alcoholism , Drug Users , Substance-Related Disorders , Humans , Neuroinflammatory Diseases , Substance-Related Disorders/epidemiology , Comorbidity
5.
Am J Drug Alcohol Abuse ; 49(3): 359-369, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36862971

ABSTRACT

Background: We previously found a conditioned increase in central neuroinflammatory markers (Interleukin 6; IL-6) following exposure to alcohol-associated cues. Recent studies suggest (unconditioned) induction of IL-6 is entirely dependent on ethanol-induced corticosterone.Objectives: The goals of these present studies were to test whether alcohol-paired cues facilitated the hypothalamic-pituitary-adrenal (HPA) axis response to either a subthreshold priming alcohol dose or an immune or psychological stress challengeMethods: In Experiment 1 (N = 64), adult male Sprague Dawley rats were trained (paired or unpaired, four pairings total) with either vehicle or 2 g/kg alcohol [intragastric (i.g.) or intraperitoneal (i.p.)] injections. In Experiments 2 (N = 28) and 3 (N = 30), male rats were similarly trained but with 4 g/kg alcohol i.g. intubations. On test day, all rats were either administered a 0.5 g/kg alcohol dose (i.p. or i.g. Experiment 1), a 100 µg/kg i.p. lipopolysaccharide (LPS) challenge (Experiment 2), or a restraint challenge (Experiment 3), and exposed to alcohol-associated cues. Blood plasma was collected for analysis.Results: Alcohol-associated cues facilitated the plasma corticosterone response to a subthreshold dose of alcohol (F1,28 = 4.85, p < .05) and an immune challenge (F8,80 = 6.23, p < .001), but not a restraint challenge (F2,27 = 0.18, p > .05).Conclusion: These findings reveal that the impact of the cues associated with alcohol intoxication on the HPA axis may be context-specific. This work illustrates how HPA axis learning processes form in the early stages of alcohol use and has important implications for how the HPA and neuroimmune conditioning may develop in alcohol use disorder in humans and facilitate the response to a later immune challenge.


Subject(s)
Corticosterone , Ethanol , Humans , Rats , Male , Animals , Rats, Sprague-Dawley , Interleukin-6 , Hypothalamo-Hypophyseal System , Cues , Pituitary-Adrenal System
6.
Eur J Neurosci ; 55(9-10): 2311-2325, 2022 05.
Article in English | MEDLINE | ID: mdl-33458889

ABSTRACT

Adolescence is a developmental period characterized by rapid behavioral and physiological changes, including enhanced vulnerability to stress. Recent studies using rodent models of adolescence have demonstrated age differences in neuroendocrine responses and blunted neuroimmune responding to pharmacological challenges. The present study was designed to test whether this neuroimmune insensitivity would generalize to a non-pharmacological stress challenge. Male and female adolescent (P29-33) and adult (P70-80) Sprague Dawley rats were exposed to intermittent footshock for one-, two-, or two-hours + recovery. Plasma corticosterone and progesterone levels as well as gene expression of several cytokines and c-Fos gene expression in the paraventricular nucleus of the hypothalamus (PVN), the medial amygdala (MeA), and the ventral hippocampus (vHPC) were analyzed. The results of the present study demonstrated differences in response to footshock, with these differences dependent on age, sex, and brain region of interest. Adult males and females demonstrated time-dependent increases in IL-1ß and IL-1R2 in the PVN, with these changes not evident in adolescent males and substantially blunted in adolescent females. TNFα expression was decreased in all regions of interest, with adults demonstrating more suppression relative to adolescents and age differences more apparent in males than in females. IL-6 expression was affected by footshock predominantly in the vHPC of adolescent and adult males and females, with females demonstrating prolonged elevation of IL-6 gene expression. In summary, central cytokine responses to acute stressor exposure are blunted in adolescent rats, with the most pronounced immaturity evident for the brain IL-1 signaling system.


Subject(s)
Interleukin-6 , Stress, Psychological , Animals , Corticosterone , Cytokines/metabolism , Female , Hypothalamo-Hypophyseal System/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Paraventricular Hypothalamic Nucleus , Pituitary-Adrenal System/metabolism , Rats , Rats, Sprague-Dawley , Stress, Psychological/metabolism
7.
Brain Behav Immun ; 102: 209-223, 2022 05.
Article in English | MEDLINE | ID: mdl-35245677

ABSTRACT

Binge drinking that typically begins during adolescence can have long-lasting neurobehavioral consequences, including alterations in the central and peripheral immune systems. Central and peripheral inflammation disrupts blood-brain barrier (BBB) integrity and exacerbates pathology in diseases commonly associated with disturbed BBB function. Thus, the goal of the present studies was to determine long-lasting effects of adolescent intermittent ethanol (AIE) on BBB integrity. For AIE, male and female Sprague Dawley rats were repeatedly exposed to ethanol (4 g/kg, intragastrically) or water during adolescence between postnatal day (P) 30 and P50. In adulthood (∼P75), rats were challenged with fluorescein isothiocyanate (FITC)-tagged Dextran of varying molecular weights (4, 20, & 70 kDa) for assessment of BBB permeability using gross tissue fluorometry (Experiment 1). Experiment 2 extended these effects using immunofluorescence, adding an adult ethanol-exposed group to test for a specific developmental vulnerability. Finally, as a first test of hypothesized mechanism, Experiment 3 examined the effect of AIE on Vascular Endothelial Growth Factor A (VEGFA) and its co-localization with pericytes (identified through expression of platelet derived growth factor receptor beta (PDGFRß), a key regulatory cell embedded within the BBB. Male, but not female, rats with a history of AIE showed significantly increased dextran permeability in the nucleus accumbens (NAc), cingulate prefrontal cortex (cPFC), and amygdala (AMG). Similar increases in dextran were observed in the hippocampus (HPC) and ventral tegmental area (VTA) of male rats with a history of AIE or equivalent ethanol exposure during adulthood. No changes in BBB permeability were evident in females. When VEGFa expression was examined, male rats exposed to AIE were challenged with 3.5 g/kg ethanol (i.p.) or vehicle acutely in adulthood to assess long-lasting versus acute actions of ethanol. Adult rats with a history of AIE showed significantly fewer total cells expressing VEGFa in the AMG and dHPC following the acute ethanol challenge in adulthood. They also showed a significant reduction in the number of PDGFRß positive cells that also expressed VEGFa signal. The anatomical distribution of these effects corresponded with increased BBB permeability after AIE (i.e., differential effects in the PVN, AMG, and dHPC). These studies demonstrated sex-specific effects of AIE, with males, but not females, demonstrating long-term increases in BBB permeability that correlated with changes in VEGFa and PDGFRß protein, two factors known to influence BBB permeability.


Subject(s)
Ethanol , Vascular Endothelial Growth Factor A , Animals , Blood-Brain Barrier , Dextrans , Ethanol/pharmacology , Female , Male , Permeability , Rats , Rats, Sprague-Dawley
8.
Dev Psychobiol ; 64(2): e22237, 2022 03.
Article in English | MEDLINE | ID: mdl-35191529

ABSTRACT

Childhood psychological trauma appears to sensitize stress-related neuroinflammatory systems to increase later vulnerability for depression and other stress-related mental disorders. Isolation of guinea pig pups from the maternal attachment figure for 3 h in threatening surroundings leads to a sensitization of inflammatory-mediated, depressive-like behavior and fever during later isolations. A previous study found the non-selective COX inhibitor naproxen administered before the initial isolation moderated depressive-like behavior and its sensitization. Here, we examined effects of naproxen given following early isolation. Male and female guinea pig pups surgically implanted with telemetry devices to measure core temperature were isolated for 3 h on 2 consecutive days near weaning (first isolation Day 20-24). Several days later, they began 4 consecutive days of injection with either saline vehicle or 10 or 20 mg/kg naproxen prior to a third isolation in early adolescence, that is, 10 days after their first isolation. Across the first two isolations, depressive-like behavior and fever sensitized. Both doses of naproxen attenuated depressive-like behavior during the third isolation. Fever was unaffected. Results suggest prostaglandin mediation of sensitization of depressive-like behavioral, but not febrile, responses to subsequent isolation. Findings also support further study of anti-inflammatory treatments to mitigate lasting consequences of early-attachment disruption.


Subject(s)
Depression , Maternal Deprivation , Animals , Behavior, Animal/physiology , Child , Depression/drug therapy , Female , Guinea Pigs , Humans , Male , Motor Activity/physiology , Prostaglandins/pharmacology
9.
Brain Behav Immun ; 91: 546-555, 2021 01.
Article in English | MEDLINE | ID: mdl-33166661

ABSTRACT

Aging is associated with an enhanced neuroinflammatory response to acute immune challenge, often termed "inflammaging." However, there are conflicting reports about whether baseline levels of inflammatory markers are elevated under ambient conditions in the aging brain, or whether such changes are observed predominantly in response to acute challenge. The present studies utilized two distinct approaches to assess inflammatory markers in young and aging Fischer 344 rats. Experiment 1 examined total tissue content of inflammatory markers from hippocampus of adult (3 month), middle-aged (12 month), and aging (18 month) male Fischer (F) 344 rats using multiplex analysis (23-plex). Though trends emerged for several cytokines, no significant differences in basal tissue content were observed across the 3 ages examined. Experiment 2 measured extracellular concentrations of inflammatory factors in the hippocampus from adult (3 month) and aging (18 month) males and females using large-molecule in vivo microdialysis. Although few significant aging-related changes were observed, robust sex differences were observed in extracellular concentrations of CCL3, CCL20, and IL-1α. Experiment 2 also evaluated the involvement of the P2X7 purinergic receptor in neuroinflammation using reverse dialysis of the selective agonist BzATP. BzATP produced an increase in IL-1α and IL-1ß release and rapidly suppressed the release of CXCL1, CCL2, CCL3, CCL20, and IL-6. Other noteworthy sex by aging trends were observed in CCL3, IL-1ß, and IL-6. Together, these findings provide important new insight into late-aging and sex differences in neuroinflammation, and their regulation by the P2X7 receptor.


Subject(s)
Aging , Chemokines , Cytokines , Hippocampus/physiopathology , Receptors, Purinergic P2X7 , Sex Characteristics , Animals , Female , Inflammation , Male , Microdialysis , Rats , Rats, Inbred F344 , Receptors, Purinergic
10.
Cytokine ; 133: 155126, 2020 09.
Article in English | MEDLINE | ID: mdl-32505093

ABSTRACT

Prenatal Alcohol Exposure (PAE) exerts devastating effects on the Central Nervous System (CNS), which vary as a function of both ethanol load and gestational age of exposure. A growing body of evidence suggests that alcohol exposure profoundly impacts a wide range of cytokines and other inflammation-related genes in the CNS. The olfactory system serves as a critical interface between infectious/inflammatory signals and other aspects of CNS function, and demonstrates long-lasting plasticity in response to alcohol exposure. We therefore utilized transcriptome profiling to identify gene expression patterns for immune-related gene families in the olfactory bulb of Long Evans rats. Pregnant dams received either an ad libitum liquid diet containing 35% daily calories from ethanol (ET), a pair-fed diet (PF) matched for caloric content, or free choice (FCL) access to the liquid diet and water from Gestational Day (GD) 11-20. Offspring were fostered to dams fed the FCL diet, weaned on P21, and then housed with same-sex littermates until mid-adolescence (P40) or young adulthood (P90). At the target ages of P40 or P90, offspring were euthanized via brief CO2 exposure and brains/blood were collected. Gene expression analysis was performed using a Rat Gene 1.0 ST Array (Affymetrix), and preliminary analyses focused on two moderately overlapping gene clusters, including all immune-related genes and those related to neuroinflammation. A total of 146 genes were significantly affected by prenatal Diet condition, whereas the factor of Age (P40 vs P90) revealed 998 genes significantly changed, and the interaction between Diet and Age yielded 162 significant genes. From this dataset, we applied a threshold of 1.3-fold change (30% increase or decrease in expression) for inclusion in later analyses. Findings indicated that in adolescents, few genes were altered by PAE, whereas adults displayed an increase of a wide range of gene upregulation as a result of PAE. Pathway analysis predicted an increase in Nf-κB activation in adolescence and a decrease in adulthood due to prenatal ethanol exposure, indicating age-specific and long-lasting alterations to immune signaling. These data may provide important insight into the relationship between immune-related signaling cascades and long-term changes in olfactory bulb function after PAE.


Subject(s)
Ethanol/adverse effects , Gene Expression/genetics , Inflammation/genetics , Prenatal Exposure Delayed Effects/genetics , Animals , Cytokines/genetics , Female , Gene Expression Profiling/methods , Hippocampus/pathology , Male , Olfactory Bulb/pathology , Pregnancy , Rats , Rats, Long-Evans
11.
Stress ; 23(4): 368-385, 2020 07.
Article in English | MEDLINE | ID: mdl-31591928

ABSTRACT

In response to stressor exposure, expression of the inflammatory cytokine interleukin-1ß (IL-1) is increased within the paraventricular nucleus of the hypothalamus (PVN). Surgical removal of the adrenal glands (ADX) potentiated stress-induced IL-1 expression, suggesting a role for adrenal-derived hormones in constraining stress-evoked increases in IL-1. While corticosterone (CORT) is a primary factor inhibiting IL-1 expression, progesterone (PROG) is also released by the adrenal glands in male rats in response to stress and also has potent anti-inflammatory properties. This series of studies first established doses of CORT and PROG that adequately recapitulate the normal stress-induced rise, and then tested for individual and combined roles of CORT and PROG in mitigating stress-induced expression of inflammatory genes. We found that CORT injection alone attenuated ADX-induced increases in IL-1 expression and normalized the HPA axis response to stress. In general, PROG replacement had little effect on changes in HPA axis responsivity or stress-induced inflammatory measures. When CORT and PROG were co-administered, a small effect on expression of the decoy receptor, IL-1R2 was observed, suggestive of an anti-inflammatory response. Overall, these results suggest that although CORT is likely to be the primary stress-related hormone responsible for constraining cytokine expression evoked by stress, CORT and PROG may exert certain combined actions that temper stress-induced neuroinflammation.LAY SUMMARYExposure to stress promoted expression of inflammation-related genes in the PVN and BNST. This inflammation was mainly suppressed by the adrenal hormone corticosterone, whereas progesterone had a smaller role in mitigating post-stress inflammation.


Subject(s)
Corticosterone , Hypothalamo-Hypophyseal System , Animals , Corticosterone/pharmacology , Male , Paraventricular Hypothalamic Nucleus , Pituitary-Adrenal System , Progesterone/pharmacology , Rats , Stress, Physiological , Stress, Psychological
12.
Dev Psychobiol ; 62(6): 749-757, 2020 09.
Article in English | MEDLINE | ID: mdl-32115686

ABSTRACT

During infection, sickness behaviors, such as a hunched stance with piloerection, can facilitate host resistance by supporting the generation and maintenance of fever. Fever, in turn, is mediated by hypothalamic neuroimmune signaling. Sickness behaviors, however, can also be influenced by social stimuli. In this study, guinea pig pups were injected with lipopolysaccharide to simulate a bacterial infection and then exposed to a novel, threatening environment while either with their mother or alone. We found that the presence of the mother suppressed sickness behavior, but enhanced fever, and had no measureable effect on gene expression of hypothalamic mediators of fever. This 3-way dissociation induced by the mother's presence is interpreted in terms of the differential adaptive consequences of behavioral and febrile responses for pups in this situation. The results contribute to a growing literature linking immunological and social processes.


Subject(s)
Behavior, Animal/physiology , Fear/physiology , Fever , Gene Expression/physiology , Hypothalamus , Illness Behavior/physiology , Mothers , Animals , Female , Fever/chemically induced , Fever/immunology , Fever/metabolism , Guinea Pigs , Hypothalamus/immunology , Hypothalamus/metabolism , Lipopolysaccharides/pharmacology , Male
13.
Alcohol Clin Exp Res ; 43(4): 640-654, 2019 04.
Article in English | MEDLINE | ID: mdl-30667526

ABSTRACT

BACKGROUND: Studies have demonstrated persistent changes in central nervous system (CNS) cytokine gene expression following ethanol (EtOH) exposure. However, the low endogenous expression and short half-lives of cytokines in the CNS have made cytokine protein detection challenging. The goal of these studies was to establish parameters for use of large-molecule microdialysis and sensitive multiplexing technology for the simultaneous detection of brain cytokines, corticosterone (CORT), and EtOH concentrations in the awake behaving rat. METHODS: Adult (P75+) male Sprague Dawley rats that were either naïve to EtOH (Experiment 1) or had a history of adolescent chronic intermittent EtOH (CIE; Experiment 2) were given an acute EtOH challenge during microdialysis. Experiment 1 examined brain EtOH concentrations, CORT and a panel of neuroimmune analytes, including cytokines associated with innate and adaptive immunity. The natural time course of changes in these cytokines was compared to the effects of an acute 1.5 or 3.0 g/kg intraperitoneal (i.p.) EtOH challenge. In Experiment 2, rats with a history of adolescent CIE or controls exposed to vehicle were challenged with 3.0 g/kg i.p. EtOH during microdialysis in adulthood, and a panel of cytokines was examined in parallel with brain EtOH concentrations and CORT. RESULTS: The microdialysis procedure itself induced a cytokine-specific response that replicated across studies, specifically a sequential elevation of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10. Surprisingly, acute EtOH did not significantly alter this course of cytokine fluctuations in the hippocampus. However, a history of adolescent CIE showed drastic effects on multiple neuroimmune analytes when rechallenged with EtOH as adults. Rats with a history of adolescent EtOH displayed a severely blunted neuroimmune response in adulthood, evinced by suppressed IL-1ß, IL-10, and TNF-α. CONCLUSIONS: Together, these findings provide a methodological framework for assessment of cytokine release patterns, their modulation by EtOH, and the long-lasting changes to neuroimmune reactivity evoked by a history of adolescent CIE.


Subject(s)
Cytokines/metabolism , Ethanol/adverse effects , Ethanol/metabolism , Hippocampus/metabolism , Immunoassay/methods , Microdialysis/methods , Animals , Corticosterone/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Rats , Tumor Necrosis Factor-alpha/metabolism
14.
Alcohol Clin Exp Res ; 43(3): 425-438, 2019 03.
Article in English | MEDLINE | ID: mdl-30589435

ABSTRACT

BACKGROUND: Alcohol-related brain damage (ARBD) is associated with neurotoxic effects of heavy alcohol use and nutritional deficiency, in particular thiamine deficiency (TD), both of which induce inflammatory responses in brain. Although neuroinflammation is a critical factor in the induction of ARBD, few studies have addressed the specific contribution(s) of ethanol (EtOH) versus TD. METHODS: Adult rats were randomly divided into 6 conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH for 6 months; CET with injections of thiamine (CET + T); severe pyrithiamine-induced TD (PTD); moderate PTD; moderate PTD during CET; and pair-fed controls. After the treatments, the rats were split into 3 recovery phase time points: the last day of treatment (time point 1), acute recovery (time point 2: 24 hours posttreatment), and delayed recovery (time point 3: 3 weeks posttreatment). At these time points, vulnerable brain regions (thalamus, hippocampus, frontal cortex) were collected and changes in neuroimmune markers were assessed using a combination of reverse transcription polymerase chain reaction and protein analysis. RESULTS: CET led to minor fluctuations in neuroimmune genes, regardless of the structure being examined. In contrast, PTD treatment led to a profound increase in neuroimmune genes and proteins within the thalamus. Cytokine changes in the thalamus ranged in magnitude from moderate (3-fold and 4-fold increase in interleukin-1ß [IL-1ß] and IκBα) to severe (8-fold and 26-fold increase in tumor necrosis factor-α and IL-6, respectively). Though a similar pattern was observed in the hippocampus and frontal cortex, overall fold increases were moderate relative to the thalamus. Importantly, neuroimmune gene induction varied significantly as a function of severity of TD, and most genes displayed a gradual recovery across time. CONCLUSIONS: These data suggest an overt brain inflammatory response by TD and a subtle change by CET alone. Also, the prominent role of TD in the immune-related signaling pathways leads to unique regional and temporal profiles of induction of neuroimmune genes.


Subject(s)
Brain/drug effects , Brain/pathology , Ethanol/adverse effects , Inflammation Mediators/metabolism , Thiamine Deficiency/metabolism , Thiamine/pharmacology , Animals , Biomarkers/metabolism , Frontal Lobe/metabolism , Hippocampus/metabolism , Male , Pyrithiamine , Rats , Thalamus/metabolism , Thiamine Deficiency/chemically induced , Time Factors , Transcriptional Activation/drug effects
15.
Brain Behav Immun ; 70: 141-156, 2018 05.
Article in English | MEDLINE | ID: mdl-29458194

ABSTRACT

Acute alcohol intoxication induces significant alterations in brain cytokines. Since stress challenges also profoundly impact central cytokine expression, these experiments examined the influence of acute and chronic stress on ethanol-induced brain cytokine responses. In Experiment 1, adult male rats were exposed to acute footshock. After a post-stress recovery interval of 0, 2, 4, or 24 h, rats were administered ethanol (4 g/kg; intragastric), with trunk blood and brains collected 3 h later. In non-stressed controls, acute ethanol increased expression of Il-6 and IκBα in the hippocampus. In contrast, rats exposed to footshock 24 h prior to ethanol demonstrated potentiation of hippocampal Il-6 and IκBα expression relative to ethanol-exposed non-stressed controls. Experiment 2 subsequently examined the effects of chronic stress on ethanol-related cytokine expression. Following a novel chronic escalating stress procedure, rats were intubated with ethanol. As expected, acute ethanol increased Il-6 expression in all structures examined, yet the Il-6 response was attenuated exclusively in the hippocampus in chronically stressed rats. Later experiments determined that neither acute nor chronic stress affected ethanol pharmacokinetics. When ethanol hypnosis was examined, however, rats exposed to chronic stress awoke at significantly lower blood ethanol levels compared to acutely stressed rats, despite similar durations of ethanol-induced sedation. These data indicate that chronic stress may increase sensitivity to ethanol hypnosis. Together, these experiments demonstrate an intriguing interaction between recent stress history and ethanol-induced increases in hippocampal Il-6, and may provide insight into novel pharmacotherapeutic targets for prevention and treatment of alcohol-related health outcomes based on stress susceptibility.


Subject(s)
Ethanol/metabolism , Stress, Psychological/metabolism , Animals , Brain/metabolism , Chronic Disease , Corticosterone/blood , Cytokines/metabolism , Ethanol/pharmacokinetics , Ethanol/pharmacology , Hippocampus/metabolism , I-kappa B Proteins/drug effects , Interleukin-1beta/drug effects , Interleukin-6/metabolism , Male , Rats , Rats, Sprague-Dawley , Stress, Psychological/physiopathology
16.
Dev Psychobiol ; 59(1): 128-132, 2017 01.
Article in English | MEDLINE | ID: mdl-27374759

ABSTRACT

Early-life stress is thought to increase later vulnerability for developing depressive illness by sensitizing underlying stress-responsive systems. Guinea pig pups separated from their mother and isolated in a novel cage for 3 hr exhibit a sensitized depressive-like behavioral response when separated again the following day as well as weeks later. The behavioral response and its sensitization appear to be mediated by inflammatory factors. To determine if this sensitization is specific to the separation response or if it reflects a broader underlying depressive-like state, guinea pig pups that had either been separated for 3 hr or remained with their mothers were observed in the forced swim test the following 3 days. Earlier separation was found to increase the duration of immobility, a measure sensitive to antidepressant treatment. These results support the use of the guinea pig as a model for examining mechanisms of inflammatory-mediated sensitization of depression following stress in early life.


Subject(s)
Behavior, Animal/physiology , Central Nervous System Sensitization/physiology , Depression/physiopathology , Maternal Deprivation , Stress, Psychological/physiopathology , Animals , Depression/etiology , Female , Guinea Pigs , Male , Stress, Psychological/complications
17.
Stress ; 18(4): 367-80, 2015.
Article in English | MEDLINE | ID: mdl-26176590

ABSTRACT

The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative or antagonistic interactions between steroid hormone receptors (estrogen and glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies.


Subject(s)
Brain/immunology , Cytokines/immunology , Gene Expression Regulation , Neuroimmunomodulation/immunology , Receptors, Estrogen/immunology , Receptors, Glucocorticoid/immunology , Stress, Psychological/immunology , Adult Survivors of Child Adverse Events , Animals , Brain/growth & development , Chemokines/immunology , Female , Humans , Inflammation , Male , Neuronal Plasticity , Sex Factors
18.
J Pharmacol Exp Ther ; 351(3): 628-41, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25271258

ABSTRACT

In the central nervous system, the ATP-gated Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is expressed in glial cells and modulates neurophysiology via release of gliotransmitters, including the proinflammatory cytokine interleukin (IL)-1ß. In this study, we characterized JNJ-42253432 [2-methyl-N-([1-(4-phenylpiperazin-1-yl)cyclohexyl]methyl)-1,2,3,4-tetrahydroisoquinoline-5-carboxamide] as a centrally permeable (brain-to-plasma ratio of 1), high-affinity P2X7 antagonist with desirable pharmacokinetic and pharmacodynamic properties for in vivo testing in rodents. JNJ-42253432 is a high-affinity antagonist for the rat (pKi 9.1 ± 0.07) and human (pKi 7.9 ± 0.08) P2X7 channel. The compound blocked the ATP-induced current and Bz-ATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethylammonium)]-induced release of IL-1ß in a concentration-dependent manner. When dosed in rats, JNJ-42253432 occupied the brain P2X7 channel with an ED50 of 0.3 mg/kg, corresponding to a mean plasma concentration of 42 ng/ml. The compound blocked the release of IL-1ß induced by Bz-ATP in freely moving rat brain. At higher doses/exposure, JNJ-42253432 also increased serotonin levels in the rat brain, which is due to antagonism of the serotonin transporter (SERT) resulting in an ED50 of 10 mg/kg for SERT occupancy. JNJ-42253432 reduced electroencephalography spectral power in the α-1 band in a dose-dependent manner; the compound also attenuated amphetamine-induced hyperactivity. JNJ-42253432 significantly increased both overall social interaction and social preference, an effect that was independent of stress induced by foot-shock. Surprisingly, there was no effect of the compound on either neuropathic pain or inflammatory pain behaviors. In summary, in this study, we characterize JNJ-42253432 as a novel brain-penetrant P2X7 antagonist with high affinity and selectivity for the P2X7 channel.


Subject(s)
Central Nervous System Agents/metabolism , Central Nervous System Agents/pharmacology , Isoquinolines/metabolism , Isoquinolines/pharmacology , Piperazines/metabolism , Piperazines/pharmacology , Purinergic P2X Receptor Antagonists/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/metabolism , Animals , Animals, Newborn , Central Nervous System Agents/therapeutic use , Dose-Response Relationship, Drug , Humans , Isoquinolines/therapeutic use , Male , Mice , Neuralgia/drug therapy , Neuralgia/metabolism , Piperazines/therapeutic use , Purinergic P2X Receptor Antagonists/therapeutic use , Rats , Rats, Sprague-Dawley
19.
Brain Behav Immun ; 37: 15-20, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24184399

ABSTRACT

During pathogen exposure or some forms of stress, proinflammatory processes induce an array of motivated and behavioral adjustments termed "sickness behaviors". Although withdrawal from social interactions is a commonly observed sickness behavior, the relation between social behavior and sickness is much more complex. Sickness can suppress or stimulate social behavior. Sickness can serve as a social cue. Stressors that are social in nature can induce sickness behaviors, and sickness behavior can be readily suppressed by meaningful social stimuli. The nature, context, and timing of these effects together suggest that cytokine-induced behavior may play a role in mediating social interactions in various non-pathological conditions.


Subject(s)
Cytokines/physiology , Illness Behavior/physiology , Social Behavior , Animals , Humans , Stress, Psychological/physiopathology
20.
Neuroendocrinology ; 100(2-3): 162-77, 2014.
Article in English | MEDLINE | ID: mdl-25300872

ABSTRACT

Exposure to stressors such as foot shock (FS) leads to increased expression of multiple inflammatory factors, including the proinflammatory cytokine interleukin-1 (IL-1) in the brain. Studies have indicated that there are sex differences in stress reactivity, suggesting that the fluctuations in gonadal steroid levels across the estrous cycle may play a regulatory role in the stress-induced cytokine expression. The present studies were designed to investigate the role of 17-ß-estradiol (E2) and progesterone (Pg) in regulating the cytokine response within the paraventricular nucleus (PVN) of the hypothalamus through analysis of gene expression with real-time RT-PCR. Regularly cycling female rats showed a stress-induced increase in PVN IL-1 levels during the diestrous, proestrous, and estrous stages. During the metestrous stage, no change in IL-1 levels was seen following FS; however, estrogen receptor (ER)-ß levels did increase. Ovariectomy resulted in an increase in PVN IL-1 levels, which was attenuated by treatment with estradiol benzoate (10 or 50 µg), indicating an E2-mediated anti-inflammatory effect. Ovariectomized rats treated with Pg (500 or 1,250 µg) showed no alteration in IL-1 levels, but Pg did up-regulate ER-ß gene expression. The results from the current study implicate a potential mechanism through which high availability of endogenous Pg during the metestrous stage increases ER-ß sensitivity, which in turn attenuates the PVN IL-1 response to stress. Thus, the interaction between gonadal steroid hormones and their central receptors may exert a powerful inhibitory effect on neuroimmune consequences of stress throughout the estrous cycle.


Subject(s)
Estradiol/metabolism , Estrous Cycle/metabolism , Interleukin-1/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Progesterone/metabolism , Stress, Psychological/metabolism , Animals , Disease Models, Animal , Electroshock , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrogen Receptor beta/metabolism , Female , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/physiology , Ovariectomy , Paraventricular Hypothalamic Nucleus/drug effects , Progesterone/administration & dosage , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Reproductive Control Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL