Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Appl Biomech ; 34(2): 151-158, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29139321

ABSTRACT

Applying white noise vibration to the ankle tendons has previously been used to improve passive movement detection and alter postural control, likely by enhancing proprioceptive feedback. The aim of the present study was to determine if similar methods focused on the ankle plantarflexors affect the performance of both quiet standing and an active postural positioning task, in which participants may be more reliant on proprioceptive feedback from actively contracting muscles. Twenty young, healthy participants performed quiet standing trials and active postural positioning trials designed to encourage reliance on plantarflexor proprioception. Performance under normal conditions with no vibration was compared to performance with 8 levels of vibration amplitude applied to the bilateral Achilles tendons. Vibration amplitude was set either as a percentage of sensory threshold (n = 10) or by root-mean-square (RMS) amplitude (n = 10). No vibration amplitude had a significant effect on quiet standing. In contrast, accuracy of the active postural positioning task was significantly (P = .001) improved by vibration with an RMS amplitude of 30 µm. Setting vibration amplitude based on sensory threshold did not significantly affect postural positioning accuracy. The present results demonstrate that appropriate amplitude tendon vibration may hold promise for enhancing the use of proprioceptive feedback during functional active movement.


Subject(s)
Achilles Tendon/physiology , Ankle/physiology , Feedback, Sensory/physiology , Noise , Posture/physiology , Vibration , Adult , Biomechanical Phenomena , Female , Humans , Male
2.
J Neurophysiol ; 114(4): 2220-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26289467

ABSTRACT

Active control of the mediolateral location of the feet is an important component of a stable bipedal walking pattern, although the roles of sensory feedback in this process are unclear. In the present experiments, we tested whether hip abductor proprioception influenced the control of mediolateral gait motion. Participants performed a series of quiet standing and treadmill walking trials. In some trials, 80-Hz vibration was applied intermittently over the right gluteus medius (GM) to evoke artificial proprioceptive feedback. During walking, the GM was vibrated during either right leg stance (to elicit a perception that the pelvis was closer mediolaterally to the stance foot) or swing (to elicit a perception that the swing leg was more adducted). Vibration during quiet standing evoked leftward sway in most participants (13 of 16), as expected from its predicted perceptual effects. Across the 13 participants sensitive to vibration, stance phase vibration caused the contralateral leg to be placed significantly closer to the midline (by ∼2 mm) at the end of the ongoing step. In contrast, swing phase vibration caused the vibrated leg to be placed significantly farther mediolaterally from the midline (by ∼2 mm), whereas the pelvis was held closer to the stance foot (by ∼1 mm). The estimated mediolateral margin of stability was thus decreased by stance phase vibration but increased by swing phase vibration. Although the observed effects of vibration were small, they were consistent with humans monitoring hip proprioceptive feedback while walking to maintain stable mediolateral gait motion.


Subject(s)
Feedback, Sensory , Hip , Leg , Postural Balance , Proprioception , Walking , Biomechanical Phenomena , Feedback, Sensory/physiology , Female , Hip/physiology , Humans , Leg/physiology , Male , Muscle, Skeletal/physiology , Physical Stimulation/methods , Postural Balance/physiology , Posture/physiology , Proprioception/physiology , Vibration , Walking/physiology , Young Adult
3.
J Neurophysiol ; 112(2): 374-83, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24790168

ABSTRACT

Stability is an important concern during human walking and can limit mobility in clinical populations. Mediolateral stability can be efficiently controlled through appropriate foot placement, although the underlying neuromechanical strategy is unclear. We hypothesized that humans control mediolateral foot placement through swing leg muscle activity, basing this control on the mechanical state of the contralateral stance leg. Participants walked under Unperturbed and Perturbed conditions, in which foot placement was intermittently perturbed by moving the right leg medially or laterally during the swing phase (by ∼50-100 mm). We quantified mediolateral foot placement, electromyographic activity of frontal-plane hip muscles, and stance leg mechanical state. During Unperturbed walking, greater swing-phase gluteus medius (GM) activity was associated with more lateral foot placement. Increases in GM activity were most strongly predicted by increased mediolateral displacement between the center of mass (CoM) and the contralateral stance foot. The Perturbed walking results indicated a causal relationship between stance leg mechanics and swing-phase GM activity. Perturbations that reduced the mediolateral CoM displacement from the stance foot caused reductions in swing-phase GM activity and more medial foot placement. Conversely, increases in mediolateral CoM displacement caused increased swing-phase GM activity and more lateral foot placement. Under both Unperturbed and Perturbed conditions, humans controlled their mediolateral foot placement by modulating swing-phase muscle activity in response to the mechanical state of the contralateral leg. This strategy may be disrupted in clinical populations with a reduced ability to modulate muscle activity or sense their body's mechanical state.


Subject(s)
Gait , Leg/physiology , Walking/physiology , Biomechanical Phenomena , Female , Humans , Leg/innervation , Male , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Young Adult
4.
J Neurophysiol ; 111(5): 1120-31, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24335207

ABSTRACT

While performing a simple bouncing task, humans modify their preferred movement period and pattern of plantarflexor activity in response to changes in system mechanics. Over time, the preferred movement pattern gradually adapts toward the resonant frequency. The purpose of the present experiments was to determine whether humans undergo a similar process of gradually adapting their stride period and plantarflexor activity after a change in mechanical demand while walking. Participants walked on a treadmill while we measured stride period and plantarflexor activity (medial gastrocnemius and soleus). Plantarflexor activity during stance was divided into a storage phase (30-65% stance) and a return phase (65-100% stance) based on when the Achilles tendon has previously been shown to store and return mechanical energy. Participants walked either on constant inclines (0%, 1%, 5%, 9%) or on a variable incline (0-1%) for which they were unaware of the incline changes. For variable-incline trials, participants walked under both single-task and dual-task conditions in order to vary the cognitive load. Both stride period and plantarflexor activity increased at steeper inclines. During single-task walking, small changes in incline were followed by gradual adaptation of storage-phase medial gastrocnemius activity. However, this adaptation was not present during dual-task walking, indicating some level of cognitive involvement. The observed adaptation may be the result of using afferent feedback in order to optimize the contractile conditions of the plantarflexors during the stance phase. Such adaptation could serve to improve metabolic economy but may be limited in clinical populations with disrupted proprioception.


Subject(s)
Adaptation, Physiological/physiology , Gait/physiology , Muscle, Skeletal/physiology , Walking/physiology , Adult , Cognition , Electromyography , Exercise Test , Feedback, Physiological , Female , Humans , Male , Stroop Test
5.
Exp Brain Res ; 232(1): 283-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24136344

ABSTRACT

Tendon vibration can alter proprioceptive feedback, one source of sensory information which humans can use to produce accurate movements. However, the effects of tendon vibration during functional movement vary depending on the task. For example, ankle tendon vibration has considerably smaller effects during walking than standing posture. The purpose of this study was to test whether the effects of ankle tendon vibration are predictably influenced by the mechanical demands of a task, as quantified by peak velocity. Twelve participants performed symmetric, cyclical ankle plantar flexion/dorsiflexion movements while lying prone with their ankle motion unconstrained. The prescribed movement period (1, 3 s) and peak-to-peak amplitude (10°, 15°, 20°) were varied across trials; shorter movement periods or larger amplitudes increased the peak velocity. In some trials, vibration was continuously and simultaneously applied to the right ankle plantar flexor and dorsiflexor tendons, while the left ankle tendons were never vibrated. The vibration frequency (40, 80, 120, 160 Hz) was varied across trials. During trials without vibration, participants accurately matched the movement of their ankles. The application of 80 Hz vibration to the right ankle tendons significantly reduced the amplitude of right ankle movement. However, the effect of vibration was smaller during more mechanically demanding (i.e., higher peak velocity) movements. Higher vibration frequencies had larger effects on movement accuracy, possibly due to parallel increases in vibration amplitude. These results demonstrate that the effects of ankle tendon vibration are dependent on the mechanical demand of the task being performed, but cannot definitively identify the underlying physiological mechanism.


Subject(s)
Ankle/physiology , Feedback, Sensory/physiology , Movement/physiology , Tendons/physiology , Vibration , Adult , Ankle Joint/physiology , Female , Humans , Male , Muscle Spindles/physiology , Posture/physiology , Proprioception/physiology , Young Adult
6.
J Biomech ; 166: 112043, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484654

ABSTRACT

Many individuals who experience a stroke exhibit reduced modulation of their mediolateral foot placement, an important gait stabilization strategy. One factor that may contribute to this deficit is altered somatosensory processing, which can be probed by applying vibration to the involved muscles (e.g., the hip abductors). The purpose of this study was to investigate whether appropriately controlled hip abductor vibration can increase foot placement modulation among people with chronic stroke. 40 people with chronic stroke performed a series of treadmill walking trials without vibration and with vibration of either the hip abductors or lateral trunk (a control condition) that scaled with their real-time mediolateral motion. To assess participants' vibration sensitivity, we also measured vibration detection threshold and lateral sway evoked by abductor vibration during quiet standing. As a group, foot placement modulation increased significantly with either hip or trunk vibration, compared to without vibration. However, these changes were quite variable across participants, and were not predicted by either vibration detection threshold or the lateral sway evoked by hip vibration during standing. Overall, we found that somatosensory stimulation had small, positive effects on post-stroke foot placement modulation. Unexpectedly, these effects were observed with both hip abductor and lateral trunk vibration, perhaps indicating that the trunk can also provide useful somatosensory feedback during walking. Future work is needed to determine whether repeated application of such somatosensory stimulation can produce sustained effects on this important gait stabilization strategy.


Subject(s)
Foot , Stroke , Humans , Foot/physiology , Lower Extremity , Gait/physiology , Walking/physiology , Postural Balance/physiology
7.
Gait Posture ; 109: 9-14, 2024 03.
Article in English | MEDLINE | ID: mdl-38237508

ABSTRACT

BACKGROUND: Many people with chronic stroke (PwCS) exhibit walking balance deficits linked to increased fall risk and decreased balance confidence. One potential contributor to these balance deficits is a decreased ability to modulate mediolateral stepping behavior based on pelvis motion. This behavior, hereby termed mediolateral step modulation, is thought to be an important balance strategy but can be disrupted in PwCS. RESEARCH QUESTION: Are biomechanical metrics of mediolateral step modulation related to common clinical balance measures among PwCS? METHODS: In this cross-sectional study, 93 PwCS walked on a treadmill at their self-selected speed for 3-minutes. We quantified mediolateral step modulation for both paretic and non-paretic steps by calculating partial correlations between mediolateral pelvis displacement at the start of each step and step width (ρSW), mediolateral foot placement relative to the pelvis (ρFP), and final mediolateral location of the pelvis (ρPD) at the end of the step. We also assessed several common clinical balance measures (Functional Gait Assessment [FGA], Activities-specific Balance Confidence scale [ABC], self-reported fear of falling and fall history). We performed Spearman correlations to relate each biomechanical metric of step modulation to FGA and ABC scores. We performed Wilcoxon rank sum tests to compare each biomechanical metric between individuals with and without a fear of falling and a history of falls. RESULTS: Only ρFP for paretic steps was significantly related to all four clinical balance measures; higher paretic ρFP values tended to be observed in participants with higher FGA scores, with higher ABC scores, without a fear of falling and without a history of falls. However, the strength of each of these relationships was only weak to moderate. SIGNIFICANCE: While the present results do not provide insight into causality, they justify future work investigating whether interventions designed to increase ρFP can improve clinical measures of post-stroke balance in parallel.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Cross-Sectional Studies , Biomechanical Phenomena , Fear , Stroke/complications , Gait , Walking , Postural Balance
8.
Exerc Sport Sci Rev ; 41(1): 36-43, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23038242

ABSTRACT

During cyclical tasks, humans often prefer stereotyped movement patterns. Although minimization of metabolic energy expenditure commonly is proposed as an underlying motor control goal, the mechanism by which humans choose their preferred movement pattern is not clear. We hypothesize that humans use proprioceptive feedback, which provides information about body mechanics in the identification of the preferred pattern of movement.


Subject(s)
Feedback, Sensory/physiology , Movement/physiology , Adaptation, Physiological/physiology , Biomechanical Phenomena , Energy Metabolism/physiology , Humans , Task Performance and Analysis
9.
J Neurophysiol ; 107(8): 2244-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22298828

ABSTRACT

Humans often appear to prefer movement patterns that minimize the metabolic energy expenditure of performing a task. However, it is not clear whether this preference is dependent on adaptation to feedback or results from a previously learned motor plan. We recently found that for a bouncing task with an identifiable neuromechanical resonant frequency, humans do not initially prefer to bounce at the resonant frequency despite its presumed metabolic benefits. The purpose of the present study was to determine whether humans adapt their preferred bouncing frequency over time to approach the metabolic optimum. Subjects (n = 12) performed a series of 6-min reclined bouncing trials while we quantified bounce frequency, metabolic rate, and rate of positive mechanical work performed on the body. In one trial, subjects bounced at their preferred frequency. In five other trials, subjects bounced at frequencies prescribed by a metronome to match specific percentages of their resonant frequency (80-120%). Positive mechanical work rate was held constant across trials by having subjects match real-time visual feedback to a target. The metabolic rate was lowest during prescribed frequency trials near resonance, not during the preferred frequency trial when subjects were free to choose the bouncing frequency. While the initial preferred frequency was lower than the resonant frequency, the preferred frequency gradually approached resonance over the course of 6 min. These results provide evidence that humans do not choose their preferred movement pattern based on an unchanging learned motor plan, but instead adapt their preferred frequency in response to feedback. Our findings may have implications for clinical populations, as reduced sensory acuity could prevent identification of the metabolically optimal movement pattern.


Subject(s)
Adaptation, Physiological/physiology , Basal Metabolism/physiology , Energy Metabolism/physiology , Movement/physiology , Psychomotor Performance/physiology , Adult , Female , Humans , Male , Young Adult
10.
J Exp Biol ; 214(Pt 22): 3768-74, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22031741

ABSTRACT

Elastic tissues in the human body can store and return mechanical energy passively, reducing the metabolic cost of cyclical movements. However, it is not clear whether humans prefer movement patterns that optimize this storage and return. We investigated the preferred movement pattern during a bouncing task for which non-invasive techniques can identify the resonant frequency, which is the least metabolically costly. We quantified the preferred and resonant bounce frequencies for three mechanical conditions. During 'normal' trials, subjects bounced while reclined on a sled that moves along a track. During 'added mass' trials, mass was added to the sled. During 'added stiffness' trials, a spring was attached between the sled and the supporting frame, parallel to the track. Subsequently, we quantified the preferred bounce frequencies during ischemia, a technique that disrupts the available sensory feedback. Mechanical condition had a significant effect on both the preferred and resonant frequencies. Changes in preferred frequency scaled with resonant frequency, but the preferred frequency was significantly lower than the resonant frequency. These results indicate that humans adapt their preferred bouncing pattern in response to changes in mechanical condition. Humans may prefer a lower than resonant frequency because of an inability to sense metabolic cost during our relatively short trials. In contrast, during ischemia the preferred bounce frequency remained constant even when mechanical condition was varied, indicating that feedback is necessary to adapt the preferred frequency to changes in mechanics. These findings suggest that disrupted sensory feedback may prevent humans from choosing the optimal movement pattern.


Subject(s)
Movement , Adult , Biomechanical Phenomena , Elasticity , Female , Gait , Humans , Male , Models, Biological , Tendons/chemistry , Young Adult
11.
Eur J Appl Physiol ; 111(10): 2399-407, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21870119

ABSTRACT

Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.


Subject(s)
Recruitment, Neurophysiological/physiology , Animals , Electric Stimulation/methods , Electric Stimulation Therapy/methods , Electromyography , Humans , Muscle Contraction/physiology , Muscle Fatigue/physiology , Neuromuscular Junction/physiology
12.
Article in English | MEDLINE | ID: mdl-34550889

ABSTRACT

Hip abductor proprioception contributes to the control of mediolateral foot placement, which varies with step-by-step fluctuations in pelvis dynamics. Prior work has used hip abductor vibration as a sensory probe to investigate the link between vibration within a single step and subsequent foot placement. Here, we extended prior findings by applying time and location varying vibration in every step, seeking to predictably manipulate the continuous, step-by-step relationship between pelvis dynamics and foot placement. We compared participants' (n = 32; divided into two groups of 16 with slightly different vibration control) gait behavior across four treadmill walking conditions: 1) No feedback; 2) Random feedback, with vibration unrelated to pelvis motion; 3) Augmented feedback, with vibration designed to evoke proprioceptive feedback paralleling the actual pelvis motion; 4) Disrupted feedback, with vibration designed to evoke proprioceptive feedback inversely related to pelvis motion. We hypothesized that the relationship between pelvis dynamics and foot placement would be strengthened by Augmented feedback but weakened by Disrupted feedback. For both participant groups, the strength of the relationship between pelvis dynamics at the start of a step and foot placement at the end of a step was significantly (p ≤ 0.0002) influenced by the feedback condition. The link between pelvis dynamics and foot placement was strongest with Augmented feedback, but not significantly weakened with Disrupted feedback, partially supporting our hypotheses. Our approach to augmenting proprioceptive feedback during gait may have implications for clinical populations with a weakened relationship between pelvis motion and foot placement.


Subject(s)
Foot , Walking , Biomechanical Phenomena , Gait , Humans , Proprioception
13.
J Biomech ; 128: 110738, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34509909

ABSTRACT

People with chronic stroke (PwCS) are susceptible to mediolateral losses of balance while walking, possibly due in part to inaccurate control of mediolateral paretic foot placement. We hypothesized that mediolateral foot placement errors when stepping to stationary or shifting visual targets would be larger for paretic steps than for steps taken by neurologically-intact individuals, hereby referred to as controls. Secondarily, we hypothesized that paretic foot placement errors would be correlated with previously identified deficits in isolated paretic hip abduction accuracy. 34 PwCS and 12 controls walked overground on an instrumented mat used to quantify foot placement location relative to parallel lines separated by various widths (10, 20, 30 cm). With stationary step width targets, foot placement errors were larger for paretic steps than for either non-paretic or control steps, most notably for the narrowest prescribed step width (mean absolute errors of 3.9, 2.3, and 1.9 cm, respectively). However, no differences in foot placement accuracy were observed immediately following visual target shifts, as all groups required multiple steps to achieve the new prescribed step width. Paretic hip abduction accuracy was moderately correlated with mediolateral foot placement accuracy when stepping to stationary targets (r = 0.49), but not shifting targets (r = 0.16). The present results suggest that a reduced ability to accurately abduct the paretic leg contributes to inaccurate paretic foot placement. However, the need to ensure mediolateral walking balance through mechanically-appropriate foot placement may often override the prescribed goal of stepping to visual targets, a concern of particular importance for narrow steps.


Subject(s)
Stroke Rehabilitation , Stroke , Biomechanical Phenomena , Foot , Gait , Humans , Postural Balance , Stroke/complications , Walking
14.
Article in English | MEDLINE | ID: mdl-33196440

ABSTRACT

During walking in neurologically-intact controls, larger mediolateral pelvis displacements or velocities away from the stance foot are accompanied by wider steps. This relationship contributes to gait stabilization, as modulating step width based on pelvis motion (hereby termed a "mechanically-appropriate" step width) reduces the risk of lateral losses of balance. The relationship between pelvis displacement and step width is often weakened among people with chronic stroke (PwCS) for steps with the paretic leg. Our objective was to investigate the effects of a single exposure to a novel force-field on the modulation of paretic step width. This modulation was quantified as the partial correlation between paretic step width and pelvis displacement at the step's start (step start paretic [Formula: see text]). Following 3-minutes of normal walking, participants were exposed to 5-minutes of either force-field assistance (n = 10; pushing the swing leg toward mechanically-appropriate step widths) or perturbations (n = 10: pushing the swing leg away from mechanically-appropriate step widths). This period of assistance or perturbations was followed by a 1-minute catch period to identify after-effects, a sign of altered sensorimotor control. The effects of assistance were equivocal, without a significant direct effect or after-effect on step start paretic [Formula: see text]. In contrast, perturbations directly reduced step start paretic [Formula: see text] (p = 0.004), but were followed by a positive after-effect (p = 0.02). These results suggest that PwCS can strengthen the link between pelvis motion and paretic step width if exposed to a novel mechanical environment. Future work is needed to determine whether this effect is extended with repeated perturbation exposure.


Subject(s)
Stroke , Walking , Biomechanical Phenomena , Gait , Humans , Pelvis
15.
Clin Biomech (Bristol, Avon) ; 72: 24-30, 2020 02.
Article in English | MEDLINE | ID: mdl-31809919

ABSTRACT

BACKGROUND: Gait propulsion is often altered following a stroke, with clear effects on anterior progression. Changes in the pattern of propulsion could potentially also influence swing phase mechanics. The purpose of the present study was to investigate whether post-stroke variability in paretic propulsion magnitude or timing influence paretic swing phase kinematics. METHODS: 29 chronic stroke survivors participated in this study, walking on an instrumented treadmill at their self-selected and fastest-comfortable speeds. For each participant, we calculated several propulsion-related metrics derived from anteroposterior ground reaction force or from center of mass power, as well as knee flexion angle and circumduction displacement during the swing phase. We performed a series of linear mixed model analyses to determine whether the propulsion metrics for the paretic leg were related to paretic swing phase mechanics. FINDINGS: A subset of the stroke survivors exhibited unusual braking forces late in the paretic stance phase, when strong propulsion typically occurs among uninjured controls. Beyond the effects of walking speed or walking condition, these braking forces were significantly linked with altered paretic swing phase mechanics. Specifically, large braking impulses were associated with reduced paretic knee flexion (p = 0.039) and increased paretic circumduction (p = 0.023). INTERPRETATION: The present results suggest that braking forces late in stance are particularly indicative of deficits in the production of typical swing phase kinematics. This relationship suggests that therapies designed to address altered swing kinematics should also consider altered force generation in late stance, as these behaviors appear to be coupled.


Subject(s)
Gait , Paresis/physiopathology , Stroke/complications , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Paresis/complications , Stroke Rehabilitation , Walking Speed
16.
Clin Biomech (Bristol, Avon) ; 73: 172-180, 2020 03.
Article in English | MEDLINE | ID: mdl-32004909

ABSTRACT

BACKGROUND: Individuals post-stroke have an increased risk of falling, which can lead to injuries and reduced quality of life. This increased fall risk can be partially attributed to poorer balance control, which has been linked to altered post-stroke gait kinematics (e.g. an increased step width). The application of lateral stabilization to the pelvis reduces step width among neurologically-intact young and older adults, suggesting that lateral stabilization reduces the need for active frontal plane balance control. This study sought to determine if lateral stabilization is effective at improving common measures of gait performance and dynamic balance in neurologically-intact and post-stoke individuals who responded to the stabilization by reducing their step width. METHODS: Gait performance was assessed by foot placement and propulsion symmetry while dynamic balance was assessed by peak-to-peak range of frontal plane whole body angular momentum (HR) and pelvis and trunk sway. FINDINGS: Controls and post-stroke Responders who reduced their step width in response to stabilization also reduced their mediolateral pelvis sway, but did not exhibit changes in gait performance. Contrary to expectations, both groups exhibited an increased HR, possibly indicative of decreased balance control. This increase was the result of increased relative velocity between the pelvis and head, arms and trunk segment. INTERPRETATION: These results suggest that a reduction in pelvis motion alone, as opposed to relative motion between the pelvis and upper body, may increase HR, decrease balance control and diminish gait performance. This finding has important implications for locomotor therapies that may seek to reduce pelvis motion.


Subject(s)
Postural Balance , Stroke/physiopathology , Walking/physiology , Aged , Biomechanical Phenomena , Female , Gait/physiology , Humans , Male , Middle Aged , Quality of Life , Young Adult
17.
Sci Rep ; 10(1): 12197, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699328

ABSTRACT

During human walking, step width is predicted by mediolateral motion of the pelvis, a relationship that can be attributed to a combination of passive body dynamics and active sensorimotor control. The purpose of the present study was to investigate whether humans modulate the active control of step width in response to a novel mechanical environment. Participants were repeatedly exposed to a force-field that either assisted or perturbed the normal relationship between pelvis motion and step width, separated by washout periods to detect the presence of potential after-effects. As intended, force-field assistance directly strengthened the relationship between pelvis displacement and step width. This relationship remained strengthened with repeated exposure to assistance, and returned to baseline afterward, providing minimal evidence for assistance-driven changes in active control. In contrast, force-field perturbations directly weakened the relationship between pelvis motion and step width. Repeated exposure to perturbations diminished this negative direct effect, and produced larger positive after-effects once the perturbations ceased. These results demonstrate that targeted perturbations can cause humans to adjust the active control that contributes to fluctuations in step width.


Subject(s)
Leg/physiology , Walking , Biomechanical Phenomena , Exercise Test , Female , Gait , Humans , Male , Pelvis/physiology , Young Adult
18.
IEEE Trans Neural Syst Rehabil Eng ; 27(10): 2051-2058, 2019 10.
Article in English | MEDLINE | ID: mdl-31545734

ABSTRACT

Motion of the pelvis throughout a step predicts step width during human walking. This behavior is often considered an important component of ensuring bipedal stability, but can be disrupted in populations with neurological injuries. The purpose of this study was to determine whether a novel force-field that exerts mediolateral forces on the legs can manipulate the relationship between pelvis motion and step width, providing proof-of-concept for a future clinical intervention. We designed a force-field able to: 1) minimize the delivered mediolateral forces (Transparent mode); 2) apply mediolateral forces to assist the leg toward mechanically-appropriate step widths (Assistive mode); and 3) apply mediolateral forces to perturb the leg away from mechanically-appropriate step widths (Perturbing mode). Neurologically-intact participants were randomly assigned to either the Assistive group (n = 12) or Perturbing group (n = 12), and performed a series of walking trials in which they interfaced with the force-field. We quantified the step-by-step relationship between mediolateral pelvis displacement and step width using partial correlations. Walking in the Transparent force-field had a minimal effect on this relationship. However, force-field assistance directly strengthened the relationship between pelvis displacement and step width, whereas force-field perturbations weakened this relationship. Both assistance and perturbations were followed by short-lived effects during a wash-out period, in which the relationship between pelvis displacement and step width differed from the baseline value. The present results demonstrate that the link between pelvis motion and step width can be manipulated through mechanical means, which may be useful for retraining gait balance in clinical populations.


Subject(s)
Pelvis/physiology , Walking/physiology , Adult , Artificial Limbs , Biomechanical Phenomena , Female , Gait/physiology , Healthy Volunteers , Humans , Male , Motion , Postural Balance , Robotics , Self-Help Devices , Young Adult
19.
Gait Posture ; 70: 136-140, 2019 05.
Article in English | MEDLINE | ID: mdl-30856525

ABSTRACT

BACKGROUND: Humans partially maintain gait stability by actively controlling step width based on the dynamic state of the pelvis - hereby defined as the "dynamics-dependent control of step width". Following a stroke, deficits in the accurate control of paretic leg motion may prevent use of this stabilization strategy. RESEARCH QUESTION: Do chronic stroke survivors exhibit paretic-side deficits in the dynamics-dependent control of step width? METHODS: Twenty chronic stroke survivors participated in this cross-sectional study, walking on a treadmill at their self-selected (0.57 ± 0.25 m/s; mean ± s.d.) and fastest-comfortable (0.81 ± 0.30 m/s) speeds. To quantify the dynamics-dependent control of step width, we calculated the proportion of the step-by-step variance in step width that could be predicted from mediolateral pelvis dynamics, and used partial correlations to differentiate the relative effects of pelvis displacement and velocity. Secondarily, we calculated the mean and standard deviation of more traditional gait metrics: step width; lateral foot placement; and mediolateral margin of stability (MoS). We used repeated measures ANOVA to test for significant effects of leg (paretic vs. non-paretic) and speed (self-selected vs. fastest-comfortable) on these measures. RESULTS: Relative to non-paretic steps, paretic steps exhibited a weaker (p ≤ 0.005) link between step width and pelvis dynamics, attributable to a decreased partial correlation between step width and pelvis displacement (p ≤ 0.001). Paretic steps were also placed more laterally (p < 0.0001), with a larger (p < 0.0001) and more variable (p = 0.003) MoS. The only effect of faster walking speeds was a narrower step width (p < 0.0001). SIGNIFICANCE: Pelvis displacement was less tightly linked to step width for paretic steps than for non-paretic steps, indicating a decrease in the step-by-step reactive control normally used to ensure mediolateral stability. Instead, stroke survivors placed their paretic leg farther laterally to ensure a larger MoS, behavior consistent with a greater reliance on a generalized feed-forward gait stabilization strategy.


Subject(s)
Gait Disorders, Neurologic/physiopathology , Gait/physiology , Paresis/physiopathology , Stroke/physiopathology , Aged , Biomechanical Phenomena , Chronic Disease , Cross-Sectional Studies , Exercise Test , Female , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Paresis/etiology , Walking Speed
20.
J Biomech ; 68: 78-83, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29306549

ABSTRACT

Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control.


Subject(s)
Walking Speed , Adult , Biomechanical Phenomena , Exercise Test , Female , Humans , Linear Models , Male , Multivariate Analysis
SELECTION OF CITATIONS
SEARCH DETAIL