Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Food Microbiol ; 89: 103433, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32138991

ABSTRACT

Listeriosis is a foodborne illness characterized by a relatively low morbidity, but a large disease burden due to the severity of clinical manifestations and the high case fatality rate. Increased listeriosis notifications have been observed in Europe since the 2000s. However, the reasons for this increase are largely unknown, with the sources of sporadic human listerioris often remaining elusive. Here we inferred the relative contributions of several putative sources of Listeria monocytogenes strains from listerioris patients in Northern Italy (Piedmont and Lombardy regions), using two established source attribution models (i.e. 'Dutch' and 'STRUCTURE') in comparative fashion. We compared the Multi-Locus Sequence Typing and Multi-Virulence-Locus Sequence Typing profiles of strains collected from beef, dairy, fish, game, mixed foods, mixed meat, pork, and poultry. Overall, 634 L. monocytogenes isolates were collected from 2005 to 2016. In total, 40 clonal complexes and 51 virulence types were identified, with 36% of the isolates belonging to possible epidemic clones (i.e. genetically related strains from unrelated outbreaks). Source attribution analysis showed that 50% of human listerioris cases (95% Confidence Interval 44-55%) could be attributed to dairy products, followed by poultry and pork (15% each), and mixed foods (15%). Since the contamination of dairy, poultry and pork products are closely linked to primary production, expanding actions currently limited to ready-to-eat products to the reservoir level may help reducing the risk of cross-contamination at the consumer level.


Subject(s)
Dairy Products/microbiology , Food Contamination , Foodborne Diseases/epidemiology , Listeria monocytogenes/isolation & purification , Meat/microbiology , Seafood/microbiology , Animals , Cattle , Chickens , Disease Outbreaks , Italy , Multilocus Sequence Typing , Swine
2.
BMC Vet Res ; 15(1): 257, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31340816

ABSTRACT

BACKGROUND: Infectious abortion in ruminants is a problem in animal husbandry worldwide. It is important to obtain a diagnosis, to make sure that proper control measures can be instituted, but most abortion cases remain without an etiologic diagnosis. This report describes the presence of Arcobacter species and several neglected opportunistic abortifacient agents in ruminant abortion cases showing or not co-infections among at least one of the major recognized protozoal, fungal, bacterial and viral abortifacient agents. RESULTS: A total of 67 fetuses (55 cattle and 12 goats) and just one placenta (cattle) were considered. Among the most common abortive agents, Neospora caninum (19,4%), followed by Chlamydophila abortus (4,5%), Listeria monocytogenes 1/2a (2,98%), Bovine Viral Diarrhea Virus type 1b (2,98%), Bovine herpesvirus 4 (2,98%), and Aspergillus spp. (2,98%) were detected. The isolated neglected opportunistic bacteria include Escherichia coli, Acinetobacter lwoffii, Staphylococcus spp., Streptococcus spp., Streptococcus uberis, Streptococcus suis, Trueperella pyogenes, Mannheimia haemolytica, Bacillus cereus and Nocardia spp. Other bacterial species, not associated with abortion by literature, but described as causes of diseases occurring sporadically both in humans and animals, were also detected. Three Arcobacter strains, namely two A. skirrowii and one A. cryaerophilus, were isolated from 3 bovine aborted fetuses, and A. butzleri was isolated from the placenta. CONCLUSIONS: A not negligible isolation of Arcobacter species and other neglected abortifacient agents has to be mentioned, with prevalences that seem to be emerging and replacing or co-placing the major infectious players in bovine and caprine reproductive failure due to abortion disease, even if further studies investigating the aetiological power and transmission routes are needed in order to define the role of these microrganisms in ruminant abortion.


Subject(s)
Aborted Fetus/microbiology , Aborted Fetus/parasitology , Aborted Fetus/virology , Arcobacter/isolation & purification , Cattle Diseases/epidemiology , Goat Diseases/epidemiology , Opportunistic Infections/veterinary , Abortion, Veterinary/epidemiology , Abortion, Veterinary/microbiology , Abortion, Veterinary/parasitology , Abortion, Veterinary/virology , Animals , Arcobacter/classification , Bacterial Infections/epidemiology , Bacterial Infections/veterinary , Cattle , Cattle Diseases/microbiology , Cattle Diseases/parasitology , Cattle Diseases/virology , Female , Goat Diseases/microbiology , Goat Diseases/parasitology , Goat Diseases/virology , Goats , Italy/epidemiology , Mycoses/epidemiology , Mycoses/veterinary , Parasitic Diseases, Animal/epidemiology , Placenta/microbiology , Pregnancy , Virus Diseases/epidemiology , Virus Diseases/veterinary
3.
Appl Environ Microbiol ; 84(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29196291

ABSTRACT

Changes in the microbial gene content and abundance can be analyzed to detect shifts in the microbiota composition due to the use of a starter culture in the food fermentation process, with the consequent shift of key metabolic pathways directly connected with product acceptance. Meat fermentation is a complex process involving microbes that metabolize the main components in meat. The breakdown of carbohydrates, proteins, and lipids can lead to the formation of volatile organic compounds (VOCs) that can drastically affect the organoleptic characteristics of the final products. The present meta-analysis, performed with the shotgun DNA metagenomic approach, focuses on studying the microbiota and its gene content in an Italian fermented sausage produced by using a commercial starter culture (a mix of Lactobacillus sakei and Staphylococcus xylosus), with the aim to discover the connections between the microbiota, microbiome, and the release of volatile metabolites during ripening. The inoculated fermentation with the starter culture limited the development of Enterobacteriaceae and reduced the microbial diversity compared to that from spontaneous fermentation. KEGG database genes associated with the reduction of acetaldehyde to ethanol (EC 1.1.1.1), acetyl phosphate to acetate (EC 2.7.2.1), and 2,3-butanediol to acetoin (EC 1.1.1.4) were most abundant in inoculated samples (I) compared to those in spontaneous fermentation samples (S). The volatilome profiles were highly consistent with the abundance of the genes; elevated acetic acid (1,173.85 µg/kg), ethyl acetate (251.58 µg/kg), and acetoin (1,100.19 µg/kg) were observed in the presence of the starters at the end of fermentation. Significant differences were found in the liking of samples based on flavor and odor, suggesting a higher preference by consumers for the spontaneous fermentation samples. Inoculated samples exhibited the lowest scores for the liking data, which were clearly associated with the highest concentration of acetic acid.IMPORTANCE We present an advance in the understanding of meat fermentation by coupling DNA sequencing metagenomics and metabolomics approaches to describe the microbial function during this process. Very few studies using this global approach have been dedicated to food, and none have examined sausage fermentation, underlying the originality of the study. The starter culture drastically affected the organoleptic properties of the products. This finding underlines the importance of starter culture selection that takes into consideration the functional characteristics of the microorganism to optimize production efficiency and product quality.


Subject(s)
Meat Products/microbiology , Microbiota/genetics , Microbiota/physiology , Volatile Organic Compounds/analysis , Acetic Acid/analysis , Acetic Acid/metabolism , Acetoin/analysis , Acetoin/metabolism , Animals , Colony Count, Microbial , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/metabolism , Fermentation , Fermented Foods/microbiology , Food Microbiology , Lactobacillus/isolation & purification , Lactobacillus/metabolism , Meat Products/analysis , Metabolic Networks and Pathways , Metagenomics/methods , Odorants/analysis , Staphylococcus/isolation & purification , Staphylococcus/metabolism , Swine , Volatilization
4.
Euro Surveill ; 23(10)2018 03.
Article in English | MEDLINE | ID: mdl-29536831

ABSTRACT

In May 2016, two separate clusters of febrile gastroenteritis caused by Listeria monocytogenes were detected by the local health authority in Piedmont, in northern Italy. We carried out epidemiological, microbiological and traceback investigations to identify the source. The people affected were students and staff members from two different schools in two different villages located in the Province of Turin; five of them were hospitalised. The epidemiological investigation identified a cooked beef ham served at the school canteens as the source of the food-borne outbreak. L. monocytogenes was isolated from the food, the stools of the hospitalised pupils and the environment of the factory producing the cooked beef ham. All isolates except one were serotype 1/2a, shared an indistinguishable PFGE pattern and were 100% identical by whole genome sequencing (WGS). By combining a classical epidemiological approach with both molecular subtyping and WGS techniques, we were able to identify and confirm a Listeria gastroenteritis outbreak associated with consumption of sliced cold beef ham.


Subject(s)
Disease Outbreaks , Fever/etiology , Foodborne Diseases/epidemiology , Gastroenteritis/epidemiology , Listeria monocytogenes/isolation & purification , Listeriosis/epidemiology , Red Meat/microbiology , Disease Outbreaks/statistics & numerical data , Feces/microbiology , Food Contamination , Gastroenteritis/diagnosis , Gastroenteritis/microbiology , Humans , Italy/epidemiology , Listeria monocytogenes/genetics , Listeriosis/diagnosis , Listeriosis/microbiology , Molecular Epidemiology , Whole Genome Sequencing
5.
J Insect Sci ; 18(5)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30215801

ABSTRACT

On 1 January 2018, a new regulation on 'Novel Food' has come into application in the EU. Insects and insect-based products are therefore included among the categories of food which constitute novel foods. Insects are nutrient-rich, produce fewer greenhouse gases and ammonia than conventional livestock, and have high feed conversion efficiency. Insects may be an alternative food source in the near future, but consideration of insects as a food requires scrutiny due to the risk of allergens. The aim of the present study was to develop a set of multiplex polymerase chain reaction (PCR) to detect nine edible insect species directly in foods. Four sets of mPCRs were designed to detect Locusta migratoria migratorioides (Reiche & Fairmaire, 1849) (Orthoptera: Acrididae), Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae) (mPCR-I), Acheta domesticus (Linnaeus, 1758) (Orthoptera: Gryllidae), Bombyx mori (Linnaeus, 1758) (Lepidoptera: Bombycidae (mPCR-II), Alphitobius diaperinus (Panzer, 1797) (Coleoptera: Tenebrionidae), Schistocerca gregaria (Forskål, 1775) (Orthoptera: Acrididae), Zophobas atratus (Fabricius, 1775) (Coleoptera: Tenebrionidae) (mPCR-III), Galleria mellonella (Linnaeus, 1758) (Lepidoptera: Pyralidae), and Gryllodes sigillatus (Walker, 1869) (Orthoptera: Gryllidae) (mPCR-IV). Results demonstrate that the panel of mPCRs allowed a rapid genetic identification of the insect species and has proved to be a sensible and highly discriminatory method. The assay is a potential tool in issues related to the labeling of products and food safety, in case of allergic consumers.


Subject(s)
Food Handling/methods , Insecta/classification , Multiplex Polymerase Chain Reaction , Animals , European Union , Food Handling/legislation & jurisprudence
6.
Appl Environ Microbiol ; 83(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28600315

ABSTRACT

Valle d'Aosta Lard d'Arnad is a protected designation of origin (PDO) product produced from fat of the shoulder and back of heavy pigs. Its manufacturing process can be very diverse, especially regarding the maturation temperature and the NaCl concentration used for the brine; thereby, the main goal of this study was to investigate the impact of those parameters on the microbiota developed during curing and ripening. Three farms producing Lard d'Arnad were selected. Two plants, reflecting the industrial process characterized either by low maturation temperature (plant A [10% NaCl, 2°C]) or by using a low NaCl concentration (plant B [2.5% NaCl, 4°C]), were selected, while the third was characterized by an artisanal process (plant C [30% NaCl, 8°C]). Lard samples were obtained at time 0 and after 7, 15, 30, 60, and 90 days of maturation. From each plant, 3 independent lots were analyzed. The diversity of live microbiota was evaluated by using classical plate counts and amplicon target sequencing of small subunit (SSU) rRNA. The main taxa identified by sequencing were Acinetobacter johnsonii, Psychrobacter, Staphylococcus equorum, Staphylococcus sciuri, Pseudomonas fragi, Brochothrix, Halomonas, and Vibrio, and differences in their relative abundances distinguished samples from the individual plants. The composition of the microbiota was more similar among plants A and B, and it was characterized by the higher presence of taxa recognized as undesired bacteria in food-processing environments. Oligotype analysis of Halomonas and Acinetobacter revealed the presence of several characteristic oligotypes associated with A and B samples.IMPORTANCE Changes in the food production process can drastically affect the microbial community structure, with a possible impact on the final characteristics of the products. The industrial processes of Lard d'Arnad production are characterized by a reduction in the salt concentration in the brines to address a consumer demand for less salty products; this can negatively affect the dynamics and development of the live microbiota and, as a consequence, can negatively impact the quality of the final product due to the higher abundance of spoilage bacteria. This study is an overview of the live microbiota that develop during lard manufacturing, and it highlights the importance of the use of traditional process to produce PDO from a spoilage perspective.


Subject(s)
Adipose Tissue/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Dietary Fats/analysis , Microbiota , Adipose Tissue/metabolism , Animals , Bacteria/classification , Bacteria/metabolism , DNA, Bacterial/genetics , Food Microbiology , Phylogeny , RNA, Ribosomal/genetics , Swine
7.
Foodborne Pathog Dis ; 14(7): 407-413, 2017 07.
Article in English | MEDLINE | ID: mdl-28402712

ABSTRACT

On August 28, 2015, a staphylococcal food poisoning outbreak occurred in Umbria, Italy, affecting 24 of the 42 customers who had dinner at a local restaurant. About 3 h after ingesting a variety of foods, the customers manifested gastrointestinal symptoms. Within 24 h of notification from the hospital emergency department, Sanitary Inspectors of the local Public Health Unit performed an epidemiological investigation. A retrospective cohort study was conducted among the customers. Food and environmental samples were collected. Due to the rapid onset of symptoms (vomiting, diarrhea), the food samples were analyzed for the presence of toxigenic bacteria and their toxins; nasopharyngeal swabs were collected from the waiters and cooks. Among the food tested, high levels of coagulase-positive staphylococci (CPS) (3.4 × 108 CFU/g) and staphylococcal enterotoxins (2.12 ng SEA/g) were only detected in the Chantilly cream dessert. CPS were also detected on the surface of a kitchen table (10 CFU/swab), and five food handlers were positive for Staphylococcus aureus. In total, five enterotoxigenic S. aureus isolates were recovered from three food handlers, a kitchen surface, and the Chantilly cream dessert. These isolates were further characterized by biotyping, pulsed-field gel electrophoresis, and multiplex polymerase chain reaction assays for the detection of eleven enterotoxin encoding genes (sea, seb, sec, sed, see, seg, seh, sei, sej, sep, and ser) and three genes involved in antibiotic resistance (mecA, mecC, and mupA). Three sea-positive strains, isolated from the dessert, environment, and one of the cooks, had the same pulsed-field gel electrophoresis profile and belonged to the human biotype, suggesting that the contamination causing the outbreak most likely originated from a food handler. Moreover, improper storage of the dessert, at room temperature for about 5 h, permitted microbial growth and SEA production. This study underlines the importance of both laboratory evidence and epidemiological data for outbreak investigation.


Subject(s)
Dairy Products/microbiology , Disease Outbreaks , Food Contamination , Staphylococcal Food Poisoning/epidemiology , DNA, Bacterial/isolation & purification , Electrophoresis, Gel, Pulsed-Field , Enterotoxins/isolation & purification , Food Handling , Food Microbiology , Genes, Microbial , Health Policy , Humans , Italy/epidemiology , Multiplex Polymerase Chain Reaction , Restaurants , Retrospective Studies , Staphylococcus aureus/isolation & purification
8.
Food Microbiol ; 46: 15-24, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25475261

ABSTRACT

The aim of this work was to check the efficacy of bovine lactoferrin hydrolyzed by pepsin (LFH) to prevent blue discoloration of Mozzarella cheese delaying the growth of the related spoilage bacteria. Among 64 Pseudomonas fluorescens strains, isolated from 105 Mozzarella samples, only ten developed blue discoloration in cold-stored Mozzarella cheese slices. When Mozzarella cheese samples from dairy were treated with LFH and inoculated with a selected P. fluorescens strain, no pigmentation and changes in casein profiles were found up to 14 days of cold storage. In addition, starting from day 5, the count of P. fluorescens spoiling strain was steadily ca. one log cycle lower than that of LFH-free samples. ESI-Orbitrap-based mass spectrometry analyses allowed to reveal the pigment leucoindigoidine only in the blue LFH-free cheese samples indicating that this compound could be considered a chemical marker of this alteration. For the first time, an innovative mild approach, based on the antimicrobial activity of milk protein hydrolysates, for counteracting blue Mozzarella event and controlling psychrotrophic pigmenting pseudomonads, is here reported.


Subject(s)
Cheese/microbiology , Food Preservation/methods , Lactoferrin/chemistry , Pepsin A/chemistry , Pigments, Biological/metabolism , Pseudomonas fluorescens/growth & development , Pseudomonas fluorescens/metabolism , Animals , Cattle , Cheese/analysis , Color , Food Contamination/analysis , Food Contamination/prevention & control , Food Storage
9.
Microorganisms ; 12(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38543478

ABSTRACT

The spread of antimicrobial resistant Campylobacter strains, linked to antimicrobials use and abuse in humans and food animals, has become a global public health problem. In this study, we determine the prevalence of antimicrobial resistance (AMR) in human Campylobacter isolates (n = 820) collected in Piedmont, Italy, from March 2020 to July 2023. The strains underwent susceptibility testing to determine the minimal inhibitory concentration for erythromycin, ciprofloxacin, gentamicin, streptomycin, and tetracycline: 80.1% of the strains showed resistance to at least one antibiotic. The highest prevalence of AMR was noted for ciprofloxacin and tetracycline (72.1% and 52.9%, respectively) and the lowest for erythromycin and aminoglycosides (streptomycin/gentamicin) (3.2% and 5.4%, respectively). The prevalence of co-resistance against fluoroquinolones and tetracyclines was 41.1%. The prevalence of multidrug resistant strains was 5.7%. Our data support evidence that AMR in human Campylobacter strains is common, particularly against ciprofloxacin and tetracycline, two medically important antimicrobials for humans.

10.
Foods ; 13(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397586

ABSTRACT

In accordance with U.S. FDA Foods Program Regulatory Science Steering Committee guidelines, with this study, we optimized and validated a commercial real-time PCR method for the detection of low amounts of lupin in four classes of food matrices: chocolate cookies, ragù, Olivier salad, and barley and rice flour. DNA extracted from blank (true negative) samples artificially contaminated with lupin (Lupinus albus) flour at 1000 ppm underwent dilutions with the DNA extracted from the true negative samples up to 0.5 ppm. The limit of detection for real-time PCR was 0.5 ppm in the complex matrices (range, Ct 26-34), making this a specific, robust, and rapid method for lupin allergen detection and labeling. Our validation data support the suitability of this commercially available real-time PCR method for this purpose.

11.
Ital J Food Saf ; 13(2): 11667, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38807740

ABSTRACT

Notification of foodborne outbreaks has been mandatory in Europe since 2005, and surveillance is carried out along the entire food chain. Here we report the results obtained from laboratory investigations about four cases of foodborne outbreaks that occurred in Sicily between 2009 and 2016, deemed to be related to staphylococcal enterotoxins (SEs) and coagulase-positive Staphylococci (CPS) by the Local Public Health Authority. Primosale cheese samples were processed by culture methods for enumeration of CPS and immunoenzymatic assays for detection and differentiation of the SEs possibly contained in food samples. In all cases, the mistrusted foods were found to be contaminated by CPS at bacterial loads between 5 and 8 log CFU/g and contained SE type C (SEC). The reported data confirm the risk of staphylococcal food poisoning associated with the consumption of raw milk cheese. SEC is the most commonly occurring SE in goat milk and dairy products and the most represented enterotoxin in Sicilian dairy products. Our results highlighted the need for improving the current monitoring efficiency and implementing the available laboratory methods to collect more faithful epidemiological data on the current prevalence of staphylococcal toxins in the food chain, including SEs currently not detectable by validated analytical methods.

12.
Animals (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396530

ABSTRACT

Wildlife can represent a reservoir of zoonotic pathogens and a public health problem. In the present study, we investigated the spread of zoonotic pathogens (Salmonella spp., Yersinia enterocolitica, Listeria monocytogenes, Shiga-toxin-producing Escherichia coli (STEC), and hepatitis E virus (HEV)) considering the presence of virulence and antibiotic resistance genes in game meat from animals hunted in northwest Italy. During two hunting seasons (2020 to 2022), samples of liver and/or muscle tissue were collected from chamois (n = 48), roe deer (n = 26), deer (n = 39), and wild boar (n = 35). Conventional microbiology and biomolecular methods were used for the detection, isolation, and characterization of the investigated pathogens. Two L. monocytogenes serotype IIa strains were isolated from wild boar liver; both presented fosfomycin resistance gene and a total of 22 virulence genes were detected and specified in the text. Eight Y. enterocolitica biotype 1A strains were isolated from chamois (2), wild boar (5), and deer (1) liver samples; all showed streptogramin and beta-lactam resistance genes; the virulence genes found were myfA (8/8 strains), ymoA (8/8), invA (8/8), ystB (8/8), and ail (4/8). Our data underscore the potential role of wildlife as a carrier of zoonotic and antibiotic-resistant pathogens in northwest Italy and a food safety risk for game meat consumers.

13.
Pathogens ; 12(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678437

ABSTRACT

Salmonella enterica is among the most common causes of foodborne outbreaks in humans in Europe. The global emergence of resistance to antimicrobials calls for close monitoring of the spread and prevalence of resistant Salmonella strains. In this study, we investigated the occurrence of antimicrobial resistance of Salmonella serotypes isolated from humans between 2012 and 2021 in Piedmont, northwest Italy. A total of 4814 Salmonella strains (168 serotypes) were tested against six classes of antimicrobials. Many strains (83.3%) showed resistance to at least one antibiotic: tetracycline (85.1%), ampicillin (79.2%), quinolones (47.4%), and gentamicin (28.4%). Between the first (2012-2016) and the second study period (2017-2021), a decrease in antimicrobial resistance was noted for tetracycline (from 92.4% to 75.3%), ampicillin (from 85.3% to 71.3%), quinolones (from 49.4% to 44.6%), and cefotaxime (from 34.8% to 4.0%). Many multidrug resistant Salmonella strains (43.6%) belonged to S. ser. Typhimurium, S. ser. Infantis, and S. ser. Typhimurium 1,4,[5],12:i:-. Overall, multidrug resistance decreased from 60.7% to 26.4%, indicating a reduction in the antimicrobial resistance of Salmonella strains in Piedmont and in Europe and demonstrating the effectiveness of the measures that were put in place to reduce antimicrobial resistance.

14.
Nutrients ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242141

ABSTRACT

During the last decades, plant-based milk has become very appreciated by consumers, becoming a staple ingredient, especially for alternative breakfasts. Milk contains lactose, which is a sugar hydrolysed by the lactase enzyme. Lactose intolerance and lactose malabsorption are very common food intolerances among individuals. However, a lot of consumers consider themselves as lactose intolerant on the basis of self-reported intolerance and start to avoid dairy products, ignoring that plant-based milk alternatives are not nutritionally comparable to animal milk, especially in terms of protein intake. The aim of this study is to grow folder knowledge of the security of plant-based drinks, helping competent authorities to issue a risk assessment and to apply national plans about consumer safety. Results show that proper sanitary practices, such as pasteurization, are necessary in plant-based milk alternatives as well as in dairy milk. Chemical analysis has highlighted that there are no pesticide risks for consumers.


Subject(s)
Lactose Intolerance , Oryza , Animals , Milk , Lactose , Avena
15.
Foods ; 12(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959094

ABSTRACT

In this study, we evaluated the use of hydrolates, co-products of essential oil distillation, as processing aids to improve the depuration process of Pacific oysters (Crassostrea gigas) as a post-harvest method aimed at reducing the norovirus (NoV) viral load. Live oysters were kept in water to which hydrolates of Thymus serpyllum and Citrus limon at 1% were added for 24 h. The concentration of NoV was quantified using the ISO 15216-1 quantitative real-time RT-PCR method in the oyster digestive tissue both before and after the treatment. The results showed a significant reduction of 0.2 log in the NoV GII concentration after 24 h of treatment with 1% C. limon hydrolate. Conversely, treatment with T. serpyllum did not appear to reduce the concentration of NoV compared to the control. Additionally, a sensory analysis was conducted through a blind survey comparing untreated and treated oysters. No changes in the sensory and physical characteristics of the oysters were observed, except for a decrease in the marine flavour intensity, which was positively perceived by consumers. These results indicate that the addition of hydrolates of C. limon at 1% during depuration might represent a promising processing aid for enhancing both the safety and acceptability of live oysters.

16.
Zoonoses Public Health ; 70(5): 411-419, 2023 08.
Article in English | MEDLINE | ID: mdl-37165540

ABSTRACT

On August 2019 a staphylococcal food poisoning outbreak occurred in an elderly home in Piedmont, Italy. The epidemiological investigation performed among the persons that consumed the meal identified chicken salad as the most likely source of the outbreak. Staphylococcus aureus was isolated from a total of seven samples, namely one vomit sample from a guest of the nursing home, two food samples (chicken salad with and without mayonnaise) and nasal swabs collected from a total of four persons working in the kitchen of the nursing home. The maximum likelihood tree obtained using single nucleotide polymorphisms analysis revealed that the isolates from the aforementioned samples clustered together. Multilocus sequence typing revealed that they belonged to Sequence Type 72. Fourier transform infrared spectroscopy (FTIR) was used in parallel to single nucleotide polymorphisms and whole genome sequencing for the determination of the degree of relatedness of the isolates. The results of the FTIR showed the same clustering obtained with single nucleotide polymorphisms and whole genome sequencing and revealed the source of infection. This study underlines the importance of both laboratory evidence and epidemiological data for outbreak investigation and further confirms that FTIR is a suitable support for the short-term epidemiological investigation on source attribution in case of a S. aureus infection.


Subject(s)
Staphylococcal Food Poisoning , Animals , Staphylococcal Food Poisoning/epidemiology , Staphylococcal Food Poisoning/veterinary , Staphylococcus aureus/genetics , Enterotoxins/genetics , Food Microbiology , Food Contamination/analysis , Multilocus Sequence Typing/veterinary , Disease Outbreaks , Italy/epidemiology
17.
Pathogens ; 12(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764947

ABSTRACT

Staphylococcal food poisoning results from the consumption of food contaminated by staphylococcal enterotoxins. In July 2022, the Turin local health board was notified of a suspected foodborne outbreak involving six children who had consumed döner kebab purchased from a takeaway restaurant. The symptoms (vomiting and nausea) were observed 2-3 h later. A microbiological analysis of the food samples revealed high levels (1.5 × 107 CFU/g) of coagulase-positive staphylococci (CPS). The immunoassay detected a contamination with staphylococcal enterotoxins type B (SEB). The whole genome sequencing of isolates from the food matrix confirmed the staphylococcal enterotoxin genes encoding for type B, which was in line with the SEB detected in the food. This toxin is rarely reported in staphylococcal food poisoning, however, because there is no specific commercial method of detection. The involvement of enterotoxin type P (SEP) was not confirmed, though the corresponding gene (sep) was detected in the isolates. Nasal swabs from the restaurant food handlers tested positive for CPS, linking them to the likely source of the food contamination.

18.
Pathogens ; 12(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37513810

ABSTRACT

Salmonella is the second most frequent bacterial pathogen involved in human gastrointestinal outbreaks in the European Union; it can enter the food-production chain from animal or environmental sources or from asymptomatic food operators. European food legislation has established microbiological criteria to ensure consumer protection. Salmonella is listed under both process hygiene criteria and food safety criteria. Each EU member state designates an agency to organize or perform controls and other official activities. This paper describes the official control plans performed by competent authorities in Northern Italy in the three-year period 2019-2021. A total of 4413 food samples were delivered to the IZS Food Safety laboratories for Salmonella detection, of which 36 (0.8%) tested positive. Salmonella was most frequently detected in poultry meat samples (25/36 positive samples) followed by other meat products and pork products. The official controls for the protection of consumer health apply the EU's farm-to-fork approach: the samples were collected during production (food production plants), from products on the market, and from collective catering (restaurants, cafeterias, canteens). This manuscript will provide information about the presence of Salmonella in foodstuffs that can help competent authorities to set control plans based on risk assessments.

19.
J Clin Microbiol ; 50(12): 4141-3, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23052317

ABSTRACT

We investigated the virulence properties of four Vibrio parahaemolyticus strains causing acute gastroenteritis following consumption of indigenous mussels in Italy. The isolated strains were cytotoxic and adhesive but, surprisingly, lacked tdh, trh, and type three secretion system 2 (T3SS2) genes. We emphasize that nontoxigenic V. parahaemolyticus can induce acute gastroenteritis, highlighting the need for more investigation of the pathogenicity of this microorganism.


Subject(s)
Gastroenteritis/microbiology , Vibrio Infections/diagnosis , Vibrio Infections/microbiology , Vibrio parahaemolyticus/isolation & purification , Animals , Bacterial Proteins/genetics , Bivalvia , Female , Foodborne Diseases/microbiology , Humans , Italy , Male , Middle Aged , Vibrio parahaemolyticus/pathogenicity , Virulence Factors/genetics
20.
Toxins (Basel) ; 14(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36287940

ABSTRACT

Staphylococcus (S.) aureus is a coagulase-positive pathogen of interest for human health and food safety in particular. It can survive in a wide environmental temperature range (7-48 °C, optimum 37 °C). Its enterotoxins are thermostable, which increases the risk of potential contamination in a variety of food products. Here we investigated the influence of seasonality and food type on bacterial count and presence of S. aureus enterotoxins. To do this, we analyzed 3604 food samples collected over a 5-year period (2016-2020). Ordinal logistic regression showed an influence of both seasonality and food type on the bacterial count. Regarding bacterial counts, winter was found to be the season with the highest risk, while with regards to enterotoxin production, the highest risk was found in autumn, specifically in October. The risk of contamination with S. aureus was greatest for dairy products. Our findings may inform food epidemiologists about foodborne illness prevention and risk to human health.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Coagulase , Prevalence , Seasons , Staphylococcal Infections/microbiology , Enterotoxins/analysis , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL