Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717801

ABSTRACT

Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.


Subject(s)
Adaptation, Physiological , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/physiology , Hydrogen-Ion Concentration , Animals , Humans , Tuberculosis/microbiology , Tuberculosis/drug therapy , Macrophages/microbiology , Virulence , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Antitubercular Agents/pharmacology
2.
J Bacteriol ; 204(11): e0021222, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36226966

ABSTRACT

In defined media supplemented with single carbon sources, Mycobacterium tuberculosis (Mtb) exhibits carbon source specific growth restriction. When supplied with glycerol as the sole carbon source at pH 5.7, Mtb establishes a metabolically active state of nonreplicating persistence known as acid growth arrest. We hypothesized that acid growth arrest on glycerol is not a metabolic restriction, but rather an adaptive response. To test this hypothesis, we selected for and identified several Mtb mutants that could grow under these restrictive conditions. All mutations were mapped to the ppe51 gene and resulted in variants with 3 different amino acid substitutions- S211R, E215K, and A228D. Expression of the ppe51 variants in Mtb promoted growth at acidic pH showing that the mutant alleles are sufficient to cause the dominant gain-of-function, Enhanced Acid Growth (EAG) phenotype. Testing growth on other single carbon sources showed the PPE51 variants specifically enhanced growth on glycerol, suggesting PPE51 plays a role in glycerol uptake. Using radiolabeled glycerol, enhanced glycerol uptake was observed in Mtb expressing the PPE51 (S211R) variant, with glycerol overaccumulation in triacylglycerol. Notably, the EAG phenotype is deleterious for growth in macrophages, where the mutants have selectively faster replication and reduced survival in activated macrophages compared to resting macrophages. Recombinant PPE51 protein exhibited differential thermostability in the wild type (WT) or S211R variants in the presence of glycerol, supporting the model that EAG substitutions alter PPE51-glycerol interactions. Together, these findings support that PPE51 variants selectively promote glycerol uptake and that slowed growth at acidic pH is an important adaptive mechanism required for macrophage pathogenesis. IMPORTANCE It is puzzling why Mycobacterium tuberculosis (Mtb) cannot grow on glycerol at acidic pH, as it has a carbon source and oxygen, everything it needs to grow. In this study, we found that Mtb limits uptake of glycerol at acidic pH to restrict its growth and that mutations in ppe51 promote uptake of glycerol at acidic pH and enable growth. That is, Mtb can grow well at acidic pH on glycerol, but has adapted instead to stop growth. Notably, ppe51 variants exhibit enhanced replication and reduced survival in activated macrophages, supporting a role for pH-dependent slowed growth during macrophage pathogenesis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology , Glycerol/metabolism , Acids/metabolism , Hydrogen-Ion Concentration , Carbon/metabolism
3.
mSphere ; 8(5): e0035823, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37681985

ABSTRACT

Mycobacteria can colonize environments where the availability of metal ions is limited. Biological or inorganic chelators play an important role in limiting metal availability, and we developed a model to examine Mycobacterium smegmatis survival in the presence of the chelator sodium citrate. We observed that instead of restricting M. smegmatis growth, concentrated sodium citrate killed M. smegmatis. RNAseq analysis during sodium citrate treatment revealed transcriptional signatures of metal starvation and hyperosmotic stress. Notably, metal starvation and hyperosmotic stress, individually, do not kill M. smegmatis under these conditions. A forward genetic transposon selection was conducted to examine why sodium citrate was lethal, and several sodium-citrate-tolerant mutants were isolated. Based on the identity of three tolerant mutants, mgtE, treZ, and fadD6, we propose a dual stress model of killing by sodium citrate, where sodium citrate chelate metals from the cell envelope and then osmotic stress in combination with a weakened cell envelope causes cell lysis. This sodium citrate tolerance screen identified mutants in several other genes with no known function, with most conserved in the pathogen M. tuberculosis. Therefore, this model will serve as a basis to define their functions, potentially in maintaining cell wall integrity, cation homeostasis, or osmotolerance. IMPORTANCE Bacteria require mechanisms to adapt to environments with differing metal availability. When Mycobacterium smegmatis is treated with high concentrations of the metal chelator sodium citrate, the bacteria are killed. To define the mechanisms underlying killing by sodium citrate, we conducted a genetic selection and observed tolerance to killing in mutants of the mgtE magnesium transporter. Further characterization studies support a model where killing by sodium citrate is driven by a weakened cell wall and osmotic stress, that in combination cause cell lysis.


Subject(s)
Mycobacterium smegmatis , Mycobacterium tuberculosis , Mycobacterium smegmatis/metabolism , Sodium Citrate/metabolism , Osmotic Pressure , Mycobacterium tuberculosis/genetics , Homeostasis , Cations/metabolism , Chelating Agents/metabolism
4.
RSC Adv ; 11(33): 20089-20100, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34168865

ABSTRACT

Mycobacterium tuberculosis (Mtb) senses and adapts to host immune cues as part of its pathogenesis. One environmental cue sensed by Mtb is the acidic pH of its host niche in the macrophage phagosome. Disrupting the ability of Mtb to sense and adapt to acidic pH has the potential to reduce survival of Mtb in macrophages. Previously, a high throughput screen of a ∼220 000 compound small molecule library was conducted to discover chemical probes that inhibit Mtb growth at acidic pH. The screen discovered chemical probes that kill Mtb at pH 5.7 but are inactive at pH 7.0. In this study, AC2P20 was prioritized for continued study to test the hypothesis that it was targeting Mtb pathways associated with pH-driven adaptation. RNAseq transcriptional profiling studies showed AC2P20 modulates expression of genes associated with redox homeostasis. Gene enrichment analysis revealed that the AC2P20 transcriptional profile had significant overlap with a previously characterized pH-selective inhibitor, AC2P36. Like AC2P36, we show that AC2P20 kills Mtb by selectively depleting free thiols at acidic pH. Mass spectrometry studies show the formation of a disulfide bond between AC2P20 and reduced glutathione, supporting a mechanism where AC2P20 is able to deplete intracellular thiols and dysregulate redox homeostasis. The observation of two independent molecules targeting free thiols to kill Mtb at acidic pH further supports that Mtb has restricted redox homeostasis and sensitivity to thiol-oxidative stress at acidic pH.

5.
Trends Microbiol ; 27(11): 942-953, 2019 11.
Article in English | MEDLINE | ID: mdl-31324436

ABSTRACT

Mycobacterium tuberculosis (Mtb) senses and adapts to acidic host environments during the course of pathogenesis. Mutants defective in acidic pH-dependent adaptations are often attenuated during macrophage or animal infections, supporting that these pathways are essential for pathogenesis and represent important new targets for drug discovery. This review examines a confluence of findings supporting that Mtb has restricted metabolism at acidic pH that results in the slowing of bacterial growth and changes in redox homeostasis. It is proposed that induction of the PhoPR regulon and anaplerotic metabolism, in concert with the restricted use of specific carbon sources, functions to counter reductive stress associated with acidic pH.


Subject(s)
Mycobacterium tuberculosis/metabolism , Adaptation, Physiological , Carbon/metabolism , Hydrogen-Ion Concentration , Mycobacterium tuberculosis/growth & development , Oxidation-Reduction , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL