Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Nanobiotechnology ; 21(1): 329, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37710290

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia and loss of autonomy in the elderly, implying a progressive cognitive decline and limitation of social activities. The progressive aging of the population is expected to exacerbate this problem in the next decades. Therefore, there is an urgent need to develop quantitative diagnostic methodologies to assess the onset the disease and its progression especially in the initial phases. RESULTS: Here we describe a novel technology to extract one of the most important molecular biomarkers of AD (Aß1-42) from a clinically-relevant volume - 100 µl - therein dispersed in a range of concentrations critical for AD early diagnosis. We demonstrate that it is possible to immunocapture Aß1-42 on 20 nm wide magnetic nanoparticles functionalized with hyperbranced KVLFF aptamers. Then, it is possible to transport them through microfluidic environments to a detection system where virtually all (~ 90%) the Aß1-42 molecules are concentrated in a dense plug of ca.50 nl. The technology is based on magnetic actuation by permanent magnets, specifically designed to generate high gradient magnetic fields. These fields, applied through submillimeter-wide channels, can concentrate, and confine magnetic nanoparticles (MNPs) into a droplet with an optimized shape that maximizes the probability of capturing highly diluted molecular biomarkers. These advancements are expected to provide efficient protocols for the concentration and manipulation of molecular biomarkers from clinical samples, enhancing the accuracy and the sensitivity of diagnostic technologies. CONCLUSIONS: This easy to automate technology allows an efficient separation of AD molecular biomarkers from volumes of biological solutions complying with the current clinical protocols and, ultimately, leads to accurate measurements of biomarkers. The technology paves a new way for a quantitative AD diagnosis at the earliest stage and it is also adaptable for the biomarker analysis of other pathologies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Humans , Alzheimer Disease/diagnosis , Aging , Magnetic Fields , Microfluidics
2.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614190

ABSTRACT

The reconstruction of large segmental defects still represents a critical issue in the orthopedic field. The use of functionalized scaffolds able to create a magnetic environment is a fascinating option to guide the onset of regenerative processes. In the present study, a porous hydroxyapatite scaffold, incorporating superparamagnetic Fe3O4 nanoparticles (MNPs), was implanted in a critical bone defect realized in sheep metatarsus. Superparamagnetic nanoparticles functionalized with hyperbranched poly(epsilon-Lysine) peptides and physically complexed with vascular endothelial growth factor (VEGF) where injected in situ to penetrate the magnetic scaffold. The scaffold was fixed with cylindrical permanent NdFeB magnets implanted proximally, and the magnetic forces generated by the magnets enabled the capture of the injected nanoparticles forming a VEGF gradient in its porosity. After 16 weeks, histomorphometric measurements were performed to quantify bone growth and bone-to-implant contact, while the mechanical properties of regenerated bone via an atomic force microscopy (AFM) analysis were investigated. The results showed increased bone regeneration at the magnetized interface; this regeneration was higher in the VEGF-MNP-treated group, while the nanomechanical behavior of the tissue was similar to the pattern of the magnetic field distribution. This new approach provides insights into the ability of magnetic technologies to stimulate bone formation, improving bone/scaffold interaction.


Subject(s)
Tissue Scaffolds , Vascular Endothelial Growth Factor A , Sheep , Animals , Tissue Scaffolds/chemistry , Bone Regeneration , Durapatite/chemistry , Osteogenesis , Porosity
3.
J Mater Sci Mater Med ; 27(3): 51, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26758898

ABSTRACT

The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.


Subject(s)
Biocompatible Materials , Bone Regeneration/radiation effects , Magnetics , Animals , Collagen , Durapatite , Femur , Male , Materials Testing , Rabbits , Tissue Engineering/methods , Tissue Scaffolds
4.
J Mater Sci Mater Med ; 25(10): 2365-71, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24477874

ABSTRACT

Thermo switchable magnetic hydrogels undoubtedly have a great potential for medical applications since they can behave as smart carriers able to transport bioactive molecules to a chosen part of the body and release them on demand via magneto-thermal activation. We report on the ability to modify the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM) on demand from 32 °C to LCST ≥ 37 °C. This was achieved by the absorption of controlled amounts of magnetite nanoparticles on the polymer chains. We show, through the effect on cell viability, that the resulting magnetic PNIPAM is able to trap and to release bio-active molecules, such as cell growth factors. The activities of the released bio molecule are tested on human umbilical vein endothelial cells culture. We demonstrate that the LCST of the magnetic PNIPAM can be reached remotely via inductive heating with an alternating magnetic field. This approach on magnetic PNIPAM clearly supports appealing applications in safe biomedicine.


Subject(s)
Acrylic Resins/chemistry , Delayed-Action Preparations , Drug Carriers , Human Umbilical Vein Endothelial Cells/drug effects , Vascular Endothelial Growth Factor A/pharmacokinetics , Cell Survival/drug effects , Cells, Cultured , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Human Umbilical Vein Endothelial Cells/physiology , Humans , Magnetics , Materials Testing , Thermogravimetry , Vascular Endothelial Growth Factor A/administration & dosage
5.
ACS Appl Electron Mater ; 6(5): 3138-3146, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38828040

ABSTRACT

Antiferromagnets are a class of magnetic materials of great interest in spintronic devices because of their stability and ultrafast dynamics. When interfaced with an organic molecular layer, antiferromagnetic (AF) films are expected to form a spinterface that can allow fine control of specific AF properties. In this paper, we investigate spinterface effects on CoO, an AF oxide. To access the magnetic state of the antiferromagnet, we couple it to a ferromagnetic Co film via an exchange bias (EB) effect. In this way, the formation of a spinterface is detected through changes induced on the CoO/Co EB system. We demonstrate that C60 and Gaq3 adsorption on CoO shifts its blocking temperature; in turn, an increase in both the EB fields and the coercivities is observed on the EB-coupled Co layer. Ab initio calculations for the CoO/C60 interface indicate that the molecular adsorption is responsible for a charge redistribution on the CoO layer that alters the occupation of the d orbitals of Co atoms and, to a smaller extent, the p orbitals of oxygen. As a result, the AF coupling between Co atoms in the CoO is enhanced. Considering the granular nature of CoO, a larger AF stability upon molecular adsorption is then associated with a larger number of AF grains that are stable upon reversal of the Co layer.

6.
Sci Rep ; 13(1): 5301, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37002375

ABSTRACT

The control and manipulation of superparamagnetic nanoparticles (SP-MNP) is a significant challenge and has become increasingly important in various fields, especially in biomedical research. Yet, most of applications rely on relatively large nanoparticles, 50 nm or higher, mainly due to the fact that the magnetic control of smaller MNPs is often hampered by the thermally induced Brownian motion. Here we present a magnetic device able to manipulate remotely in microfluidic environment SP-MNPs smaller than 10 nm. The device is based on a specifically tailored configuration of movable permanent magnets. The experiments performed in 500 µm capillary have shown the ability to concentrate the SP-MNPs into regions characterized by different shapes and sizes ranging from 100 to 200 µm. The results are explained by straightforward calculations and comparison between magnetic and thermal energies. We provide then a comprehensive description of the magnetic field intensity and its spatial distribution for the confinement and motion of magnetic nanoparticles for a wide range of sizes. We believe this description could be used to establish accurate and quantitative magnetic protocols not only for biomedical applications, but also for environment, food, security, and other areas.

7.
ACS Biomater Sci Eng ; 9(1): 303-317, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36490313

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have gained increasing interest in nanomedicine, but most of those that have entered the clinical trials have been withdrawn due to toxicity concerns. Therefore, there is an urgent need to design low-risk and biocompatible SPION formulations. In this work, we present an original safe-by-design nanoplatform made of silica nanoparticles loaded with SPIONs and decorated with polydopamine (SPIONs@SiO2-PDA) and the study of its biocompatibility performance by an ad hoc thorough in vitro to in vivo nanotoxicological methodology. The results indicate that the SPIONs@SiO2-PDA have excellent colloidal stability in serum-supplemented culture media, even after long-term (24 h) exposure, showing no cytotoxic or genotoxic effects in vitro and ex vivo. Physiological responses, evaluated in vivo using Caenorhabditis elegans as the animal model, showed no impact on fertility and embryonic viability, induction of an oxidative stress response, and a mild impact on animal locomotion. These tests indicate that the synergistic combination of the silica matrix and PDA coating we developed effectively protects the SPIONs, providing enhanced colloidal stability and excellent biocompatibility.


Subject(s)
Magnetite Nanoparticles , Animals , Magnetite Nanoparticles/toxicity , Silicon Dioxide/pharmacology , Magnetic Iron Oxide Nanoparticles , Indoles/pharmacology
8.
Phys Rev Lett ; 108(18): 186601, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22681097

ABSTRACT

In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m>0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered π-conjugated organic materials.

9.
ACS Appl Electron Mater ; 4(9): 4273-4279, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36193212

ABSTRACT

Orbital hybridization at the Co/C60 interface been has proved to strongly enhance the magnetic anisotropy of the cobalt layer, promoting such hybrid systems as appealing components for sensing and memory devices. Correspondingly, the same hybridization induces substantial variations in the ability of the Co/C60 interface to support spin-polarized currents and can bring out a spin-filtering effect. The knowledge of the effects at both sides allows for a better and more complete understanding of interfacial physics. In this paper we investigate the Co/C60 bilayer in the role of a spin-polarized electrode in the La0.7Sr0.3MnO3/SrTiO3/C60/Co configuration, thus substituting the bare Co electrode in the well-known La0.7Sr0.3MnO3/SrTiO3/Co magnetic tunnel junction. The study revealed that the spin polarization (SP) of the tunneling currents escaping from the Co/C60 electrode is generally negative: i.e., inverted with respect to the expected SP of the Co electrode. The observed sign of the spin polarization was confirmed via DFT calculations by considering the hybridization between cobalt and molecular orbitals.

10.
Polymers (Basel) ; 13(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771382

ABSTRACT

Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.

11.
ACS Appl Mater Interfaces ; 11(8): 8319-8326, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30720264

ABSTRACT

The understanding of magnetoresistance (MR) in organic spin valves (OSVs) based on molecular semiconductors is still incomplete after its demonstration more than a decade ago. Although carrier concentration may play an essential role in spin transport in these devices, direct experimental evidence of its importance is lacking. We probed the role of the charge carrier concentration by studying the interplay between MR and multilevel resistive switching in OSVs. The present work demonstrates that all salient features of these devices, particularly the intimate correlation between MR and resistance, can be accounted for by the impurity band model, based on oxygen migration. Finally, we highlight the critical importance of the carrier concentration in determining spin transport and MR in OSVs and the role of interface-mediated oxygen migration in controlling the OSV response.

12.
Adv Mater ; 31(10): e1806817, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30645012

ABSTRACT

The quest for a spin-polarized organic light-emitting diode (spin-OLED) is a common goal in the emerging fields of molecular electronics and spintronics. In this device, two ferromagnetic (FM) electrodes are used to enhance the electroluminescence intensity of the OLED through a magnetic control of the spin polarization of the injected carriers. The major difficulty is that the driving voltage of an OLED device exceeds a few volts, while spin injection in organic materials is only efficient at low voltages. The fabrication of a spin-OLED that uses a conjugated polymer as bipolar spin collector layer and ferromagnetic electrodes is reported here. Through a careful engineering of the organic/inorganic interfaces, it is succeeded in obtaining a light-emitting device showing spin-valve effects at high voltages (up to 14 V). This allows the detection of a magneto-electroluminescence (MEL) enhancement on the order of a 2.4% at 9 V for the antiparallel (AP) configuration of the magnetic electrodes. This observation provides evidence for the long-standing fundamental issue of injecting spins from magnetic electrodes into the frontier levels of a molecular semiconductor. The finding opens the way for the design of multifunctional devices coupling the light and the spin degrees of freedom.

13.
ACS Appl Mater Interfaces ; 10(9): 8132-8140, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29411962

ABSTRACT

Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.

14.
Comput Biol Med ; 61: 101-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25880709

ABSTRACT

Achieving an efficient fixation for complicated fractures and scaffold application treatments is a challenging surgery problem. Although many fixation approaches have been advanced and actively pursued, the optimal solution for long bone defects has not yet been defined. This paper promotes an innovative fixation method based on application of magnetic forces. The efficiency of this approach was investigated on the basis of finite element modeling for scaffold application and analytical calculations for diaphyseal fractures. Three different configurations have been analyzed including combinations of small cylindrical permanent magnets or stainless steel rods, inserted rigidly in the bone intramedullary canals and in the scaffold. It was shown that attractive forces as high as 75 N can be achieved. While these forces do not reach the strength of mechanical forces in traditional fixators, the employment of magnetic rods is expected to be beneficial by reducing considerably the interface micromotions. It can additionally support magneto-mechanical stimulations as well as enabling a magnetically assisted targeted delivery of drugs and other bio-agents.


Subject(s)
Computer Simulation , Internal Fixators , Magnetics , Orthopedic Procedures , Stress, Mechanical , Finite Element Analysis , Humans , Stainless Steel
15.
J Biomed Nanotechnol ; 11(7): 1236-46, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26307846

ABSTRACT

In the past few years, researchers have focused on the design and development of three-dimensional (3D) advanced scaffolds, which offer significant advantages in terms of cell performance. The introduction of magnetic features into scaffold technology could offer innovative opportunities to control cell populations within 3D microenvironments, with the potential to enhance their use in tissue regeneration or in cell-based analysis. In the present study, 3D fully biodegradable and magnetic nanocomposite scaffolds for bone tissue engineering, consisting of a poly(ε-caprolactone) (PCL) matrix reinforced with iron-doped hydroxyapatite (FeHA) nanoparticles, were designed and manufactured using a rapid prototyping technique. The performances of these novel 3D PCL/FeHA scaffolds were assessed through a combination of theoretical evaluation, experimental in vitro analyses and in vivo testing in a rabbit animal model. The results from mechanical com- pression tests were consistent with FEM simulations. The in vitro results showed that the cell growth in the magnetized scaffolds was 2.2-fold greater than that in non-magnetized ones. In vivo experiments further suggested that, after only 4 weeks, the PCL/FeHA scaffolds were completely filled with newly formed bone, proving a good level of histocompatibility. All of the results suggest that the introduction of magnetic features into biocompatible materials may confer significant advantages in terms of 3D cell assembly.


Subject(s)
Bone Regeneration/physiology , Femoral Fractures/therapy , Magnetite Nanoparticles/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Tissue Scaffolds , Animals , Bone Substitutes/chemical synthesis , Equipment Failure Analysis , Femoral Fractures/pathology , Femoral Fractures/physiopathology , Iron/chemistry , Magnetite Nanoparticles/ultrastructure , Male , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Nanofibers/ultrastructure , Particle Accelerators , Prosthesis Design , Rabbits , Surface Properties , Tissue Engineering/instrumentation , Treatment Outcome
16.
Sci Rep ; 4: 7397, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25491921

ABSTRACT

The outgrowth formation in inorganic thin films is a dramatic problem that has limited the technological impact of many techniques and materials. Outgrowths are often themselves part of the films, but are detrimental for vertical junctions since they cause short-circuits or work as defects, compromising the reproducibility and in some cases the operation of the corresponding devices. The problem of outgrowth is particularly relevant in ablation-based methods and in some complex oxides, but is present in a large variety of systems and techniques. Here we propose an efficient local electrochemical method to selectively decompose the outgrowths of conductive oxide thin films by electrochemical decomposition, without altering the properties of the background film. The process is carried out using the same set-up as for local oxidation nanolithography, except for the sign of the voltage bias and it works at the nanoscale both as serial method using a scanning probe and as parallel method using conductive stamps. We demonstrated our process using La 0.7 Sr 0.3 MnO3 perovskite as a representative material but in principle it can be extended to many other conductive systems.

17.
Adv Mater ; 25(4): 534-8, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23097157

ABSTRACT

Memristors are one of the most promising candidates for future information and communications technology (ICT) architectures. Two experimental proofs of concept are presented based on the intermixing of spintronic and memristive effects into a single device, a magnetically enhanced memristor (MEM). By exploiting the interaction between the memristance and the giant magnetoresistance (GMR), a universal implication (IMP) logic gate based on a single MEM device is realized.

18.
Med Eng Phys ; 34(9): 1287-93, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22381395

ABSTRACT

Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2cm(2). This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation.


Subject(s)
Bone and Bones/abnormalities , Bone and Bones/surgery , Cartilage, Articular/abnormalities , Cartilage, Articular/surgery , Magnetic Phenomena , Tissue Scaffolds , Finite Element Analysis , Prostheses and Implants , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL