ABSTRACT
PURPOSE: The emergence of chimeric antigen receptor (CAR) T-cell therapy fundamentally changed the management of individuals with relapsed and refractory large B-cell lymphoma (LBCL). However, real-world data have shown divergent outcomes for the approved products. The present study therefore set out to evaluate potential risk factors in a larger cohort. METHODS: Our analysis set included 88 patients, treated in four German university hospitals and one Italian center, who had undergone 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (PET) before CAR T-cell therapy with tisagenlecleucel or axicabtagene ciloleucel. We first determined the predictive value of conventional risk factors, treatment lines, and response to bridging therapy for progression-free survival (PFS) through forward selection based on Cox regression. In a second step, the additive potential of two common PET parameters was assessed. Their optimal dichotomizing thresholds were calculated individually for each CAR T-cell product. RESULTS: Extra-nodal involvement emerged as the most relevant of the conventional tumor and patient characteristics. Moreover, we found that inclusion of metabolic tumor volume (MTV) further improves outcome prediction. The hazard ratio for a PFS event was 1.68 per unit increase of our proposed risk score (95% confidence interval [1.20, 2.35], P = 0.003), which comprised both extra-nodal disease and lymphoma burden. While the most suitable MTV cut-off among patients receiving tisagenlecleucel was 11 mL, a markedly higher threshold of 259 mL showed optimal predictive performance in those undergoing axicabtagene ciloleucel treatment. CONCLUSION: Our analysis demonstrates that the presence of more than one extra-nodal lesion and higher MTV in LBCL are associated with inferior outcome after CAR T-cell treatment. Based on an assessment tool including these two factors, patients can be assigned to one of three risk groups. Importantly, as shown by our study, metabolic tumor burden might facilitate CAR T-cell product selection and reflect the individual need for bridging therapy.
Subject(s)
Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Lymphoma, Large B-Cell, Diffuse/therapy , Prognosis , Positron-Emission Tomography , Risk AssessmentABSTRACT
Chimeric antigen receptor T-cell therapy (CART) can be administered outpatient yet requires management of potential side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The pre-infusion tumor burden is associated with CRS, yet there is no data on the relevance of pre-infusion tumor growth rate (TGR). Our objective was to investigate TGR for the occurrence and severity of CRS and ICANS. Consecutive patients with available pre-baseline and baseline (BL) imaging before CART were included. TGR was determined as both absolute (abs) and percentage change (%) of Lugano criteria-based tumor burden in relation to days between exams. CRS and ICANS were graded according to ASTCT consensus criteria. Clinical metadata was collected including the international prognostic index (IPI), patient age, ECOG performance status, and LDH. Sixty-two patients were included (median age: 62 years, 40% female). The median pre-BL TGR [abs] and pre-BL TGR [%] was 7.5 mm2/d and 30.9%/d. Pre-BL TGR [abs] and pre-BL TGR [%] displayed a very weak positive correlation with the grade of CRS (r[abs] = 0.14 and r[%] = 0.13) and no correlation with ICANS (r[abs] = - 0.06 and r[%] = - 0.07). There was a weak positive correlation between grade of CRS and grade of ICANS (r = 0.35; p = 0.005) whereas there was no significant correlation of CRS or ICANS to any other of the examined parameters. The pre-infusion TGR before CART was weakly associated with the occurrence of CRS, but not the severity, whereas there were no significant differences in the prediction of ICANS. There was no added information when compared to pre-infusion tumor burden alone. Outpatient planning and toxicity management should not be influenced by the pre-infusion TGR.
Subject(s)
Lymphoma , Neoplasms , Humans , Female , Middle Aged , Male , Cytokine Release Syndrome , Immunotherapy, Adoptive , Neoplasms/therapy , LymphocytesABSTRACT
BACKGROUND AIMS: Chimeric antigen receptor T-cell therapy (CART) prolongs survival for patients with refractory or relapsed lymphoma, yet its efficacy is affected by the tumor burden. The relevance of tumor kinetics before infusion is unknown. We aimed to study the prognostic value of the pre-infusion tumor growth rate (TGRpre-BL) for progression-free (PFS) and overall survival (OS). METHODS: Consecutive patients with available pre-baseline (pre-BL) and baseline (BL) computed tomography or positron emission tomography/computed tomography scan before CART were included. TGR was determined as change of Lugano criteria-based tumor burden between pre-BL, BL and follow-up examinations (FU) in relation to days between imaging exams. Overall response rate (ORR), depth or response (DoR) and PFS were determined based on Lugano criteria. Multivariate regression analysis studied association of TGR with ORR and DoR. Proportional Cox regression analysis studied association of TGR with PFS and OS. RESULTS: In total, 62 patients met the inclusion criteria. The median TGRpre-BL was 7.5 mm2/d (interquartile range -14.6 mm2/d to 48.7 mm2/d); TGRpre-BL was positive (TGRpre-BL POS) in 58% of patients and negative (TGRpre-BL NEG, indicating tumor shrinkage) in 42% of patients. Patients who were TGRpre-BL POS had a 90-day (FU2) ORR of 62%, a DoR of -86% and a median PFS of 124 days. Patients who were TGRpre-BL NEG had a 90-day ORR of 44%, DoR of -47% and a median PFS of 105 days. ORR and DoR were not associated with slower TGR (P = 0.751, P = 0.198). Patients with an increase of TGR from pre-BL over BL to 30-day FU (FU1) ≥100% (TGRpre-BL-to-FU1≥100%) showed a significant association with shorter median PFS (31 days versus 343 days, P = 0.002) and shorter median OS after CART (93 days versus not reached, P < 0.001), compared with patients with TGRpre-BL-to-FU1<100%. CONCLUSIONS: In the context of CART, differences in pre-infusion tumor kinetics showed minor differences in ORR, DoR, PFS and OS, whereas the change of the TGR from pre-BL to 30-day FU significantly stratified PFS and OS. In this patient population of refractory or relapsed lymphomas, TGR is readily available based on pre-BL imaging, and its change throughout CART should be explored as a potential novel imaging biomarker of early response.
Subject(s)
Lymphoma , Neoplasms , Receptors, Chimeric Antigen , Humans , Prognosis , Fluorodeoxyglucose F18 , Cell- and Tissue-Based Therapy , Retrospective StudiesABSTRACT
PURPOSE: Chimeric antigen receptor T-cell therapy (CART) prolongs survival for patients with relapsed/refractory B-cell non-Hodgkin's lymphoma. The recently introduced International Metabolic Prognostic Index (IMPI) was shown to improve prognostication in the first-line treatment of large B-cell lymphoma. Here, we investigate the prognostic value of the IMPI for progression-free (PFS) and overall survival (OS) in the setting of CD19 CART. METHODS: Consecutively treated patients with baseline 18F-FDG PET/CT imaging and follow-up imaging at 30 days after CART were included. IMPI is composed of age, stage, and metabolic tumor volume (MTV) at baseline and was compared with the International Prognostic Index (IPI). Both indices were grouped into quartiles, as previously described for IPI. In addition, the continuous IMPI was subdivided into tertiaries for better separation of risk groups. Overall response rate (ORR), depth of response (DoR), and PFS were determined based on Lugano criteria. Proportional Cox regression analysis studied association of IMPI and IPI with PFS and OS. RESULTS: Thirty-nine patients were included. The IPI was 1 in 23%, 2 in 21%, 3 in 26%, 4 in 21%, and 5 in 10% of the patients. IMPIlow risk, IMPIintermediate risk, and IMPIhigh risk patients had 30-day ORR of 69%, 62%, and 62% and 30-day DoR of - 67%, - 66%, and - 54% with a PFS of 187 days, 97 days, and 87 days, respectively. ORR and DoR showed no correlation with lower IMPI (r = 0.065, p = 0.697). Dividing patients into three risk groups showed a significant trend for PFS stratification (p = 0.030), while IPI did not (p = 0.133). Neither IPI nor IMPI yielded a significant association with OS after CART (both p > 0.05). CONCLUSION: In the context of CART, the IMPI yielded prognostic value regarding PFS estimation. In contrast with IMPI in the first-line DLBCL setting, we did not observe a significant association of IMPI at baseline with OS after CART.
Subject(s)
Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Humans , Prognosis , Positron Emission Tomography Computed Tomography , Retrospective Studies , Lymphoma, Large B-Cell, Diffuse/therapy , Cell- and Tissue-Based Therapy , Fluorodeoxyglucose F18ABSTRACT
PURPOSE: Tumor resection represents the first-line treatment for symptomatic meningiomas, and the extent of resection has been shown to be of prognostic importance. Assessment of tumor remnants with somatostatin receptor PET proves to be superior to intraoperative estimation with Simpson grading or MRI. In this preliminary study, we evaluate the prognostic relevance of postoperative PET for progression-free survival in meningiomas. METHODS: We conducted a post hoc analysis on a prospective patient cohort with resected meningioma WHO grade 1. Patients received postoperative MRI and [68Ga]Ga-DOTA-TATE PET/CT and were followed regularly with MRI surveillance scans for detection of tumor recurrence/progression. RESULTS: We included 46 patients with 49 tumors. The mean age at diagnosis was 57.8 ± 1.7 years with a male-to-female ratio of 1:1.7. Local tumor progression occurred in 7/49 patients (14%) after a median follow-up of 52 months. Positive PET was associated with an increased risk for progression (*p = 0.015) and a lower progression-free survival (*p = 0.029), whereas MRI was not. 20 out of 20 patients (100%) with negative PET findings remained recurrence-free. The location of recurrence/progression on MRI was adjacent to regions where postoperative PET indicated tumor remnants in all cases. Gross tumor volumes were higher on PET compared to MRI (*p = 0.032). CONCLUSION: Our data show that [68Ga]Ga-DOTA-TATE PET/CT is highly sensitive in revealing tumor remnants in patients with meningioma WHO grade 1. Negative PET findings were associated with a higher progression-free survival, thus improving surveillance. In patients with tumor remnants, additional PET can optimize adjuvant radiotherapy target planning of surgically resected meningiomas.
Subject(s)
Meningeal Neoplasms , Meningioma , Organometallic Compounds , Humans , Male , Female , Middle Aged , Positron Emission Tomography Computed Tomography , Meningioma/diagnostic imaging , Meningioma/surgery , Prognosis , Gallium Radioisotopes , Progression-Free Survival , Prospective Studies , Neoplasm Recurrence, Local/diagnostic imaging , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/surgery , World Health Organization , Retrospective StudiesABSTRACT
PURPOSE: Glioma patients, especially recurrent glioma, suffer from a poor prognosis. While advances to classify glioma on a molecular level improved prognostication at initial diagnosis, markers to prognosticate survival in the recurrent situation are still needed. As 18 kDa translocator protein (TSPO) was previously reported to be associated with aggressive histopathological glioma features, we correlated the TSPO positron emission tomography (PET) signal using [18F]GE180 in a large cohort of recurrent glioma patients with their clinical outcome. METHODS: In patients with [18F]GE180 PET at glioma recurrence, [18F]GE180 PET parameters (e.g., SUVmax) as well as other imaging features (e.g., MRI volume, [18F]FET PET parameters when available) were evaluated together with patient characteristics (age, sex, Karnofsky-Performance score) and neuropathological features (e.g. WHO 2021 grade, IDH-mutation status). Uni- and multivariate Cox regression and Kaplan-Meier survival analyses were performed to identify prognostic factors for post-recurrence survival (PRS) and time to treatment failure (TTF). RESULTS: Eighty-eight consecutive patients were evaluated. TSPO tracer uptake correlated with tumor grade at recurrence (p < 0.05), with no significant differences in IDH-wild-type versus IDH-mutant tumors. Within the subgroup of IDH-mutant glioma (n = 46), patients with low SUVmax (median split, ≤ 1.60) had a significantly longer PRS (median 41.6 vs. 25.3 months, p = 0.031) and TTF (32.2 vs 8.7 months, p = 0.001). Also among IDH-wild-type glioblastoma (n = 42), patients with low SUVmax (≤ 1.89) had a significantly longer PRS (median not reached vs 8.2 months, p = 0.002). SUVmax remained an independent prognostic factor for PRS in the multivariate analysis including CNS WHO 2021 grade, IDH status, and age. Tumor volume defined by [18F]FET PET or contrast-enhanced MRI correlated weakly with TSPO tracer uptake. Treatment regimen did not differ among the median split subgroups. CONCLUSION: Our data suggest that TSPO PET using [18F]GE180 can help to prognosticate recurrent glioma patients even among homogeneous molecular subgroups and may therefore serve as valuable non-invasive biomarker for individualized patient management.
Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Neoplasm Recurrence, Local/diagnostic imaging , Glioma/diagnostic imaging , Glioma/genetics , Glioma/therapy , Positron-Emission Tomography/methods , Tyrosine , Receptors, GABA/genetics , Receptors, GABA/metabolismABSTRACT
OBJECTIVES: There are limited data on the additional diagnostic yield of axillary artery ultrasound (axUS) in addition to temporal artery ultrasound (tempUS) for the diagnosis of giant cell arteritis (GCA). METHODS: Retrospective study of consecutive patients with suspected GCA who underwent a standardized axUS and tempUS between 01/2015 and 03/2017. The diagnostic yield of axUS in addition to ultrasound of the temporal arteries with respect to the final clinical diagnosis was assessed, with a positive axUS defined as circumferential, hypoechogenic thickening of the far wall axillary artery intima media thickness (axIMT) ≥1.3 mm. A subgroup of patients underwent PET-CT within one week before or after the sonographic study. Separate analyses were performed regarding certain subgroups according to clinical presentation and to clinical pre-test probability for cranial GCA. RESULTS: Out of 228 patients, 92 received a final diagnosis of GCA. From the 92 patients with a final diagnosis of GCA, 50 (54.3%), 13 (14.1%) and 15 (16.3%) had a positive tempUS, positive axUS, and combined positive tempUS and axUS, respectively. The sensitivity of sonographic imaging for the final diagnosis of GCA increased from 69.6% to 84.8%, when axUS results were considered in addition to tempUS, while the specificity remained high (no false positive axUS). The diagnostic yield of axUS was highest in patients with a low clinical probability of cranial GCA and lowest in patients with symptoms of ocular ischemia. We observed a substantial rate (42.1%) of discordant results between axUS and PET-CT in a subgroup of 38 patients. CONCLUSIONS: In conclusion, axUS offers a substantial diagnostic yield in addition to tempUS in subjects with suspected GCA, mainly in those subjects with low clinical probability for cranial GCA.
Subject(s)
Giant Cell Arteritis , Temporal Arteries , Axillary Artery/diagnostic imaging , Carotid Intima-Media Thickness , Giant Cell Arteritis/diagnostic imaging , Humans , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Temporal Arteries/diagnostic imagingABSTRACT
BACKGROUND: Chimeric antigen receptor T-cell therapy (CART) is effective for patients with refractory or relapsed lymphoma with prolongation of survival. We aimed to improve the prediction of Lugano criteria for overall survival (OS) at 30-day follow-up (FU1) by including the pre-infusion tumor growth rate (TGRpre-BL) and its early change to 30-day FU1 imaging (TGRpost-BL). METHODS: Consecutive patients with pre-baseline (pre-BL), baseline (BL) and FU1 imaging with CT or positron emission tomography/CT before CART were included. TGR was defined as change of Lugano criteria-based tumor burden between pre-BL, BL and FU1 examinations in relation to days between imaging examinations. Overall response and progression-free survival were determined based on Lugano criteria. Proportional Cox regression analysis studied association of TGR with OS. For survival analysis, OS was analyzed using Kaplan-Meier survival curves. RESULTS: Fifty-nine out of 81 patients met the inclusion criteria. At 30-day FU1 8 patients (13.6%) had a complete response (CR), 25 patients (42.4%) a partial response (PR), 15 patients (25.4%) a stable disease (SD), and 11 patients (18.6%) a progressive disease (PD) according to CT-based Lugano criteria. The median TGRpre-BL was -0.6 mm2/day, 24.4 mm2/day, -5.1 mm2/day, and 18.6 mm2/day and the median TGRpost-BL was -16.7 mm2/day, -102.0 mm2/day, -19.8 mm2/day and 8.5 mm2/day in CR, PR, SD, and PD patients, respectively. PD patients could be subclassified into a cohort with an increase in TGR (7 of 11 patients (64%), PD TGRpre-to-post-BL INCR) and a cohort with a decrease in TGR (4 of 11 patients (36%), PD TGRpre-to-post-BL DECR) from pre-BL to post-BL. PD TGRpre-to-post-BL DECR patients exhibited similar OS to patients classified as SD, while PD TGRpre-to-post-BL INCR patients had significantly shorter OS (65 days vs 471 days, p<0.001). CONCLUSION: In the context of CART, the additional use of TGRpre-BL and its change to TGRpost-BL determined at 30-day FU1 showed better OS prognostication for patients with overall PD according to Lugano criteria. Therefore, this modification of the Lugano classification should be explored as a potential novel imaging biomarker of early response and should be validated prospectively in future studies.
Subject(s)
Lymphoma , Receptors, Chimeric Antigen , Humans , Positron-Emission Tomography , Progression-Free Survival , Cell- and Tissue-Based TherapyABSTRACT
BACKGROUND: Chimeric antigen receptor T-cell therapy (CART) prolongs survival for patients with refractory or relapsed lymphoma. Discrepancies among different response criteria for lymphoma under CART were recently shown. Our objective was to evaluate reasons for discordance among different response criteria and their relation to overall survival. METHODS: Consecutive patients with baseline and follow-up imaging at 30 (FU1) and 90 days (FU2) after CART were included. Overall response was determined based on Lugano, Cheson, response evaluation criteria in lymphoma (RECIL) and lymphoma response to immunomodulatory therapy criteria (LYRIC). Overall response rate (ORR) and rates of progressive disease (PD) were determined. For each criterion reasons for PD were analyzed in detail. RESULTS: 41 patients were included. ORR was 68%, 68%, 63%, and 68% at FU2 by Lugano, Cheson, RECIL, and LYRIC, respectively. PD rates differed among criteria with 32% by Lugano, 27% by Cheson, 17% by RECIL, and 17% by LYRIC. Dominant reasons for PD according to Lugano were target lesion (TL) progression (84.6%), new appearing lesions (NL; 53.8%), non-TL progression (27.3%), and progressive metabolic disease (PMD; 15.4%). Deviations among the criteria for defining PD were largely explained by PMD of preexisting lesions that are defined as PD only by Lugano and non-TL progression, which is not defined as PD by RECIL and in some cases classified as indeterminate response by LYRIC. CONCLUSIONS: Following CART, lymphoma response criteria show differences in imaging endpoints, especially in defining PD. The response criteria must be considered when interpreting imaging endpoints and outcomes from clinical trials.
Subject(s)
Lymphoma , Receptors, Chimeric Antigen , Humans , Lymphoma/diagnostic imaging , Lymphoma/therapy , Diagnostic Imaging , Cell- and Tissue-Based TherapyABSTRACT
Purpose: Somatostatin analogues (SSA) are frequently used in the treatment of neuroendocrine tumours. Recently, [18F]SiTATE entered the field of somatostatin receptor (SSR) positron emission tomography (PET)/computed tomography (CT) imaging. The purpose of this study was to compare the SSR-expression of differentiated gastroentero-pancreatic neuroendocrine tumours (GEP-NET) measured by [18F]SiTATE-PET/CT in patients with and without previous treatment with long-acting SSAs to evaluate if SSA treatment needs to be paused prior to [18F]SiTATE-PET/CT. Methods: 77 patients were examined with standardised [18F]SiTATE-PET/CT within clinical routine: 40 patients with long-acting SSAs up to 28 days prior to PET/CT examination and 37 patients without pre-treatment with SSAs. Maximum and mean standardized uptake values (SUVmax and SUVmean) of tumours and metastases (liver, lymphnode, mesenteric/peritoneal and bones) as well as representative background tissues (liver, spleen, adrenal gland, blood pool, small intestine, lung, bone) were measured, SUV ratios (SUVR) were calculated between tumours/metastases and liver, likewise between tumours/metastases and corresponding specific background, and compared between the two groups. Results: SUVmean of liver (5.4 ± 1.5 vs. 6.8 ± 1.8) and spleen (17.5 ± 6.8 vs. 36.7 ± 10.3) were significantly lower (p < 0.001) and SUVmean of blood pool (1.7 ± 0.6 vs. 1.3 ± 0.3) was significantly higher (p < 0.001) in patients with SSA pre-treatment compared to patients without. No significant differences between tumour-to-liver and specific tumour-to-background SUVRs were observed between both groups (all p > 0.05). Conclusion: In patients previously treated with SSAs, a significantly lower SSR expression ([18F]SiTATE uptake) in normal liver and spleen tissue was observed, as previously reported for 68Ga-labelled SSAs, without significant reduction of tumour-to-background contrast. Therefore, there is no evidence that SSA treatment needs to be paused prior to [18F]SiTATE-PET/CT.
ABSTRACT
TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.
Subject(s)
Glioblastoma , Glioma , Mesenchymal Stem Cells , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Tumor-Associated Macrophages , Macrophages , Receptors, GABA/geneticsABSTRACT
Primary hyperparathyroidism (pHPT) is a common endocrine disorder due to hyperfunctioning parathyroid glands. To date, the only curing therapy is surgical removal of the dysfunctional gland, making correct detection and localization crucial in order to perform a minimally invasive parathyroidectomy. 18F-Fluorocholine positron emission tomography/computed tomography (18F-FCH PET/CT) has shown promising results for the detection of pHPT, suggesting superiority over conventional imaging with ultrasounds or scintigraphy. A total of 33 patients with pHPT who had negative or equivocal findings in conventional imaging received 18F-FCH PET/CT preoperatively and were retrospectively included. A pathological hyperfunctional parathyroid gland was diagnosed in 24 cases (positive PET, 72.7%), 4 cases showed equivocal choline uptake (equivocal PET, 12.1%), and in 5 cases, no enhanced choline uptake was evident (negative PET, 15.2%). Twelve of the twenty-four detected adenoma patients underwent surgery, and in all cases, a pathological parathyroid adenoma was resected at the site detected by PET/CT. Two of the six patients without pathological choline uptake who received a parathyroidectomy revealed no evidence of parathyroid adenoma tissue in the histopathological evaluation. This retrospective study analyzes 18F-FCH PET/CT in a challenging patient cohort with pHPT and negative or equivocal conventional imaging results and supports the use of 18F-FCH for the diagnosis of hyperfunctional parathyroid tissue, especially in this patient setting, with a 100% true positive and true negative detection rate. Our study further demonstrates the importance of 18F-FCH PET/CT for successful surgical guidance.
ABSTRACT
Purpose: High tumor burden has emerged as a negative predictor of efficacy in chimeric antigen receptor T-cell therapy (CART) in patients with refractory or relapsed large B-cell lymphoma. This study analyzed the deviation among imaging-based tumor burden (TB) metrics and their association with progression-free (PFS) and overall survival (OS). Materials and methods: In this single-center observational study, we included all consecutively treated patients receiving CD19 CART with available baseline PET-CT imaging. Imaging-based TB was determined based on response evaluation criteria in lymphoma (RECIL), the Lugano criteria, and metabolic tumor volume. Total, nodal and extranodal TB were represented, according to the respective criteria, by sum of longest diameters (TBRECIL), sum of product of perpendicular diameters (TBLugano), and metabolic tumor volume (TBMTV). Correlation statistics were used for comparison. Proportional Cox regression analysis studied the association of TB metrics with PFS and OS. Results: 34 consecutive patients were included (median age: 67 years, 41% female) with total median baseline TBRECIL of 12.5 cm, TBLugano of 4,030 mm2 and TBMTV of 330 mL. The correlation of TBRECIL and TBLugano with TBMTV was strong (ρ=0.744, p<0.001 and ρ=0.741, p<0.001), with lowest correlation for extranodal TBRECIL with TBMTV (ρ=0.660, p<0.001). Stratification of PFS was strongest by total TBMTV>50% (HR=2.915, p=0.042), whereas total TBRECIL>50% and total TBLugano>50% were not significant (both p>0.05). None of the total TB metrics were associated with OS (all p>0.05). Conclusion: Pre-CART TB metrics vary significantly based on the assessment method, impacting their association with survival outcomes. The correlation between TBRECIL, TBLugano and TBMTV was influenced by disease phenotype and prior bridging therapy. TB method of assessment must be considered when interpreting the impact of TB on outcomes in clinical trials. Considering the heterogeneity, our results argue for standardization and harmonization across centers.
ABSTRACT
Serotonin (5-hydroxytryptamine, 5-HT) as well as noradrenaline (NA) are key modulators of various fundamental brain functions including the control of appetite. While manipulations that alter brain serotoninergic signaling clearly affect body weight, studies implicating 5-HT transporters and NA transporters (5-HTT and NAT, respectively) as a main drug treatment target for human obesity have not been conclusive. The aim of this positron emission tomography (PET) study was to investigate how these central transporters are associated with changes of body weight after 6 months of dietary intervention or Roux-en-Y gastric bypass (RYGB) surgery in order to assess whether 5-HTT as well as NAT availability can predict weight loss and consequently treatment success. The study population consisted of two study cohorts using either the 5-HTT-selective radiotracer [11C]DASB to measure 5-HTT availability or the NAT-selective radiotracer [11C]MRB to assess NAT availability. Each group included non-obesity healthy participants, patients with severe obesity (body mass index, BMI, >35 kg/m2) following a conservative dietary program (diet) and patients undergoing RYGB surgery within a 6-month follow-up. Overall, changes in BMI were not associated with changes of both 5-HTT and NAT availability, while 5-HTT availability in the dorsal raphe nucleus (DRN) prior to intervention was associated with substantial BMI reduction after RYGB surgery and inversely related with modest BMI reduction after diet. Taken together, the data of our study indicate that 5-HTT and NAT are involved in the pathomechanism of obesity and have the potential to serve as predictors of treatment outcomes.
ABSTRACT
Corticobasal syndrome (CBS) is a rare neurodegenerative condition characterized by four-repeat tau aggregation in the cortical and subcortical brain regions and accompanied by severe atrophy. The aim of this study was to evaluate partial volume effect correction (PVEC) in patients with CBS compared to a control cohort imaged with the 18-kDa translocator protein (TSPO) positron emission tomography (PET) tracer [18F]GE-180. Eighteen patients with CBS and 12 age- and sex-matched healthy controls underwent [18F]GE-180 PET. The cortical and subcortical regions were delineated by deep nuclei parcellation (DNP) of a 3D-T1 MRI. Region-specific subcortical volumes and standardized uptake values and ratios (SUV and SUVr) were extracted before and after region-based voxel-wise PVEC. Regional volumes were compared between patients with CBS and controls. The % group differences and effect sizes (CBS vs. controls) of uncorrected and PVE-corrected SUVr data were compared. Single-region positivity in patients with CBS was assessed by a >2 SD threshold vs. controls and compared between uncorrected and PVE-corrected data. Smaller regional volumes were detected in patients with CBS compared to controls in the right ventral striatum (p = 0.041), the left putamen (p = 0.005), the right putamen (p = 0.038) and the left pallidum (p = 0.015). After applying PVEC, the % group differences were distinctly higher, but the effect sizes of TSPO uptake were only slightly stronger due to the higher variance after PVEC. The single-region positivity of TSPO PET increased in patients with CBS after PVEC (100 vs. 83 regions). PVEC in the cortical and subcortical regions is valuable for TSPO imaging of patients with CBS, leading to the improved detection of elevated [18F]GE-180 uptake, although the effect sizes in the comparison against the controls did not improve strongly.
ABSTRACT
In this study, dual PET and contrast enhanced MRI were combined to investigate their correlation per voxel in patients at initial diagnosis with suspected glioblastoma. Correlation with contrast enhancement (CE) as an indicator of BBB leakage was further used to evaluate whether PET signal is likely caused by BBB disruption alone, or rather attributable to specific binding after BBB passage. PET images with [18F]GE180 and the amino acid [18F]FET were acquired and normalized to healthy background (tumor-to-background ratio, TBR). Contrast enhanced images were normalized voxel by voxel with the pre-contrast T1-weighted MRI to generate relative CE values (rCE). Voxel-wise analysis revealed a high PET signal even within the sub-volumes without detectable CE. No to moderate correlation of rCE with TBR voxel-values and a small overlap as well as a larger distance of the hotspots delineated in rCE and TBR-PET images were detected. In contrast, voxel-wise correlation between both PET modalities was strong for most patients and hotspots showed a moderate overlap and distance. The high PET signal in tumor sub-volumes without CE observed in voxel-wise analysis as well as the discordant hotspots emphasize the specificity of the PET signals and the relevance of combined differential information from dual PET and MRI images.