Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Virol ; 97(1): e0177322, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36475764

ABSTRACT

Flaviviruses have a cytoplasmic replicative cycle, and crucial events, such as genome translation and replication, occur in the endoplasmic reticulum. However, some viral proteins, such as C, NS1, and NS5 from Zika virus (ZIKV) containing nuclear localization signals (NLSs) and nuclear export signals (NESs), are also located in the nucleus of Vero cells. The NS2A, NS3, and NS4A proteins from dengue virus (DENV) have also been reported to be in the nucleus of A549 cells, and our group recently reported that the NS3 protein is also located in the nucleus of Huh7 and C636 cells during DENV infection. However, the NS3 protease-helicase from ZIKV locates in the perinuclear region of infected cells and alters the morphology of the nuclear lamina, a component of the nuclear envelope. Furthermore, ZIKV NS3 has been reported to accumulate on the concave face of altered kidney-shaped nuclei and may be responsible for modifying other elements of the nuclear envelope. However, nuclear localization of NS3 from ZIKV has not been substantially investigated in human host cells. Our group has recently reported that DENV and ZIKV NS3 alter the nuclear pore complex (NPC) by cleaving some nucleoporins. Here, we demonstrate the presence of ZIKV NS3 in the nucleus of Huh7 cells early in infection and in the cytoplasm at later times postinfection. In addition, we found that ZIKV NS3 contains an NLS and a putative NES and uses the classic import (importin-α/ß) and export pathway via CRM-1 to be transported between the cytoplasm and the nucleus. IMPORTANCE Flaviviruses have a cytoplasmic replication cycle, but recent evidence indicates that nuclear elements play a role in their viral replication. Viral proteins, such as NS5 and C, are imported into the nucleus, and blocking their import prevents replication. Because of the importance of the nucleus in viral replication and the role of NS3 in the modification of nuclear components, we investigated whether NS3 can be localized in the nucleus during ZIKV infection. We found that NS3 is imported into the nucleus via the importin pathway and exported to the cytoplasm via CRM-1. The significance of viral protein nuclear import and export and its relationship with infection establishment is highlighted, emphasizing the development of new host-directed antiviral therapeutic strategies.


Subject(s)
Active Transport, Cell Nucleus , Karyopherins , Viral Nonstructural Proteins , Zika Virus , Animals , Humans , alpha Karyopherins/metabolism , beta Karyopherins/metabolism , Chlorocebus aethiops , Karyopherins/metabolism , Nuclear Localization Signals/metabolism , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus Infection , Dengue Virus
2.
Arch Virol ; 166(5): 1439-1446, 2021 May.
Article in English | MEDLINE | ID: mdl-33682072

ABSTRACT

Although dengue virus (DENV) replication occurs in the cytoplasm, the nucleus plays an essential role during infection. Both the capsid protein (C) and non-structural protein 5 (NS5) are translocated into the infected cell nucleus to favor viral replication. Previously, our group reported the nuclear localization of the NS3 protein during DENV infection of mosquito cells; however, the nuclear localization of the DENV NS3 protein in human host cells has not been described. Here, we demonstrated that NS3 is present in the nucleus of Huh7 cells at early infection times, and later, it is mainly located in the cytoplasm.


Subject(s)
Cell Nucleus/metabolism , Dengue Virus/metabolism , Serine Endopeptidases/metabolism , Cell Line, Tumor , Cytoplasm/metabolism , Humans
3.
Rev Med Virol ; 30(4): e2100, 2020 07.
Article in English | MEDLINE | ID: mdl-32101633

ABSTRACT

Flavivirus infections are a public health threat in the world that requires the development of safe and effective vaccines. Therefore, the understanding of the anti-flavivirus humoral immune response is fundamental to future studies on flavivirus pathogenesis and the design of anti-flavivirus therapeutics. This review aims to provide an overview of the current understanding of the function and involvement of flavivirus proteins in the humoral immune response as well as the ability of the anti-envelope (anti-E) antibodies to interfere (neutralizing antibodies) or not (non-neutralizing antibodies) with viral infection, and how they can, in some circumstances enhance dengue virus infection on Fc gamma receptor (FcγR) bearing cells through a mechanism known as antibody-dependent enhancement (ADE). Thus, the dual role of the antibodies against E protein poses a formidable challenge for vaccine development. Also, we discuss the roles of antibody binding stoichiometry (the concentration, affinity, or epitope recognition) in the neutralization of flaviviruses and the "breathing" of flavivirus virions in the humoral immune response. Finally, the relevance of some specific antibodies in the design and improvement of effective vaccines is addressed.


Subject(s)
Disease Susceptibility/immunology , Flavivirus Infections/immunology , Flavivirus Infections/virology , Flavivirus/immunology , Host-Pathogen Interactions/immunology , Immunity, Humoral/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Flavivirus/drug effects , Flavivirus Infections/drug therapy , Humans , Viral Envelope Proteins/immunology , Viral Vaccines/immunology
4.
J Gen Virol ; 101(8): 825-839, 2020 08.
Article in English | MEDLINE | ID: mdl-32478656

ABSTRACT

Dengue virus (DENV) is an important flavivirus that is transmitted to humans by Aedes mosquitoes, where it can establish a persistent infection underlying vertical and horizontal transmission. However, the exact mechanism of persistent DENV infection is not well understood. Recently miR-927 was found to be upregulated in C6/36-HT cells at 57 weeks of persistent infection (C6-L57), suggesting its participation during this type of infection. The aim of this study was to determine the role of miR-927 during infection with DENV type 2. The results indicate an overexpression of miR-927 in C6-L57 cells and acutely infected cells according to the time of infection and the m.o.i. used. The downregulation of miR-927 in C6-L57 cells results in a reduction of both viral titre and viral genome copy number. The overexpression of miR-927 in C6-L40 and C6/36 cells infected at an m.o.i. of 0.1 causes an increase in both viral titre and viral genome copy number, suggesting a pro-viral activity of miR-927. In silico prediction analysis reveals target mRNAs for miR-927 are implicated in post-translational modifications (SUMO), translation factors (eIF-2B), the innate immune system (NKIRAS), exocytosis (EXOC-2), endocytosis (APM1) and the cytoskeleton (FLN). The expression levels of FLN were the most affected by both miR-927 overexpression and inhibition, and FLN was determined to be a direct target of miR-927 by a dual-luciferase gene reporter assay. FLN has been associated with the regulation of the Toll pathway and either overexpression or downregulation of miR-927 resulted in expression changes of antimicrobial peptides (Cecropins A and G, and Defensin D) involved in the Toll pathway response.


Subject(s)
Aedes/genetics , Aedes/virology , Dengue Virus/genetics , Dengue/virology , MicroRNAs/genetics , Animals , Cell Line , Communicable Diseases/genetics , Communicable Diseases/virology , Genome, Viral/genetics , Luciferases/genetics , Virus Replication/genetics
5.
J Virol ; 87(13): 7486-501, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23616663

ABSTRACT

Severe dengue (SD) is a life-threatening complication of dengue that includes vascular permeability syndrome (VPS) and respiratory distress. Secondary infections are considered a risk factor for developing SD, presumably through a mechanism called antibody-dependent enhancement (ADE). Despite extensive studies, the molecular bases of how ADE contributes to SD and VPS are largely unknown. This work compares the cytokine responses of differentiated U937 human monocytic cells infected directly with dengue virus (DENV) or in the presence of enhancing concentrations of a humanized monoclonal antibody recognizing protein E (ADE-DENV infection). Using a cytometric bead assay, ADE-DENV-infected cells were found to produce significantly higher levels of the proinflammatory cytokines interleukin 6 (IL-6), IL-12p70, and tumor necrosis factor alpha (TNF-α), as well as prostaglandin E2 (PGE2), than cells directly infected. The capacity of conditioned supernatants (conditioned medium [CM]) to disrupt tight junctions (TJs) in MDCK cell cultures was evaluated. Exposure of MDCK cell monolayers to CM collected from ADE-DENV-infected cells (ADE-CM) but not from cells infected directly led to a rapid loss of transepithelial electrical resistance (TER) and to delocalization and degradation of apical-junction complex proteins. Depletion of either TNF-α, IL-6, or IL-12p70 from CM from ADE-DENV-infected cells fully reverted the disrupting effect on TJs. Remarkably, mice injected intraperitoneally with ADE-CM showed increased vascular permeability in sera and lungs, as indicated by an Evans blue quantification assay. These results indicate that the cytokine response of U937-derived macrophages to ADE-DENV infection shows an increased capacity to disturb TJs, while results obtained with the mouse model suggest that such a response may be related to the vascular plasma leakage characteristic of SD.


Subject(s)
Antibody-Dependent Enhancement/immunology , Capillary Permeability/immunology , Cytokines/immunology , Dengue Virus/immunology , Dengue/physiopathology , Macrophages/virology , Analysis of Variance , Animals , Blotting, Western , Capillary Permeability/drug effects , Cell Survival/physiology , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Dengue/immunology , Dogs , Electric Impedance , Evans Blue , Fluorescent Antibody Technique , Humans , Macrophages/metabolism , Macrophages/ultrastructure , Madin Darby Canine Kidney Cells , Mice , Microscopy, Electron, Transmission , Tight Junctions/metabolism , U937 Cells
6.
Infect Dis Rep ; 16(3): 458-471, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38804444

ABSTRACT

During the COVID-19 pandemic, a considerable proportion of patients developed a severe condition that included respiratory failure, shock, or multiple organ dysfunction. Acute Kidney Injury (AKI) has been recognized as a possible cause of severe COVID-19 development. Given this, this study investigates the occurrence and consequences of AKI in Mexican patients to contribute to better knowledge and management of this problem. Methods: Using a retrospective observational cohort methodology, we investigated 313 cases from a cohort of 1019 patients diagnosed with COVID-19 at the IMSS Zacatecas General Hospital of Zone No. 1 in 2020. The prevalence of AKI was determined using the AKIN criteria based on serum creatinine levels and a detailed review of demographic characteristics, medical history, comorbidities, and clinical development. Results: The data showed a 25.30% prevalence of AKI among patients infected with severe COVID-19. Remarkably, these patients with AKI exhibited an advanced age (>65 years), arterial hypertension, a higher number of white blood cells during admission and the hospital stay, and elevated levels of C-reactive protein, serum creatinine, and blood urea nitrogen (BUN). Clinically, patients with AKI had signs of prostration, pneumonia, and the requirement for ventilatory assistance when compared to those without AKI. Finally, those diagnosed with AKI and COVID-19 had a 74% death rate. Relative risk analyses indicated that age (>65 years), arterial hypertension, high creatinine levels, endotracheal intubation, and pneumonia are associated with the development of AKI. On the other hand, among the protective factors against AKI, high hemoglobin levels and the consumption of statins during COVID-19 were found. Conclusions: The findings of this study underscore the significance of promptly identifying and effectively managing AKI to potentially alleviate the negative consequences of this complication within the Mexican population during COVID-19.

7.
STAR Protoc ; 5(2): 102992, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38568816

ABSTRACT

Finding an effective therapy against diseases caused by flaviviruses remains a challenge. Here, we present a protocol to test Food and Drug Administration-approved drugs that inhibit host nuclear protein import, promoting a reduction of dengue infection. We describe steps for analyzing the drug effect on nuclear import inhibition of cellular and viral proteins by confocal microscopy or western blotting. We then describe procedures for measuring the antiviral drug effects on virus-infected cells by flow cytometry and testing drug efficacy in dengue-infected AG129 mice by survival assays. For complete details on the use and execution of this protocol, please refer to Palacios-Rápalo et al.1.


Subject(s)
Antiviral Agents , Dengue Virus , Dengue , Animals , Mice , Dengue Virus/drug effects , Antiviral Agents/pharmacology , Humans , Dengue/drug therapy , Dengue/virology , United States Food and Drug Administration , United States , Cell Line
8.
Microorganisms ; 12(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38399787

ABSTRACT

Metformin (MET) and atorvastatin (ATO) are promising treatments for COVID-19. This review explores the potential of MET and ATO, commonly prescribed for diabetes and dyslipidemia, respectively, as versatile medicines against SARS-CoV-2. Due to their immunomodulatory and antiviral capabilities, as well as their cost-effectiveness and ubiquitous availability, they are highly suitable options for treating the virus. MET's effect extends beyond managing blood sugar, impacting pathways that can potentially decrease the severity and fatality rates linked with COVID-19. It can partially block mitochondrial complex I and stimulate AMPK, which indicates that it can be used more widely in managing viral infections. ATO, however, impacts cholesterol metabolism, a crucial element of the viral replicative cycle, and demonstrates anti-inflammatory characteristics that could modulate intense immune reactions in individuals with COVID-19. Retrospective investigations and clinical trials show decreased hospitalizations, severity, and mortality rates in patients receiving these medications. Nevertheless, the journey from observing something to applying it in a therapeutic setting is intricate, and the inherent diversity of the data necessitates carefully executed, forward-looking clinical trials. This review highlights the requirement for efficacious, easily obtainable, and secure COVID-19 therapeutics and identifies MET and ATO as promising treatments in this worldwide health emergency.

9.
Sci Rep ; 14(1): 12139, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802549

ABSTRACT

High-density lipoprotein cholesterol (HDL-c) removes cholesterol, an essential component in lipid rafts, and this cholesterol removal can regulate protein attachment to lipid rafts, modulating their functionality in the immune cell response. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can alter the lipid profile, there is little information on the role of HDL-c and other lipids in prognostic of the coronavirus disease 2019 (COVID-19) in Mexican population. This study aims to evaluate the predictive value of HDL-c and lipid profile on severity and survival of 102 patients infected with SARS-CoV-2 during the COVID-19 first wave. Our findings, derived from univariate and multivariate Cox proportional hazards regression models, highlighted age and hypertension as significant predictors of survival (HR = 1.04, p = 0.012; HR = 2.78, p = 0.027), while gender, diabetes, and obesity showed no significant impact. Triglycerides and HDL-c levels notably influenced mortality, with elevated triglycerides and lower HDL-c associated with higher mortality risk (p = 0.032). This study underscores the importance of lipid profiles alongside traditional risk factors in assessing COVID-19 risk and outcomes. It contributes to the understanding of COVID-19 patient management and emphasizes the need for further investigation into the role of dyslipidemia in influencing COVID-19 prognosis, potentially aiding in refined risk stratification and therapeutic strategies.


Subject(s)
COVID-19 , Cholesterol, HDL , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/blood , Male , Female , Middle Aged , Cholesterol, HDL/blood , Adult , Aged , SARS-CoV-2/isolation & purification , Risk Factors , Triglycerides/blood , Prognosis , Lipids/blood , Mexico/epidemiology , Dyslipidemias/blood , Proportional Hazards Models , Hypertension/blood
10.
Arch Virol ; 158(6): 1189-207, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23344777

ABSTRACT

Dengue virus (DENV) is the causative agent of the most important mosquito-borne viral disease, which is endemic to over 100 countries in tropical and subtropical areas of the world. It is transmitted to humans by Aedes mosquitoes. The first step in the viral infection of host cells is virion attachment to the plasma membrane, which is mediated by specific surface molecules. There are several molecules that participate in DENV infection of mosquitoes, but only a few have been identified. In this work, we co-purified 4 proteins from C6/36 cells using a recombinant DENV 4 E protein and identified them as 70 kDa Heat Shock and 70 kDa Heat Shock cognate proteins (HSP70/HSc70), Binding immunoglobulin protein (BiP), Thioredoxin/protein disulphide isomerase (PDI), and 44 kDa Endoplasmic reticulum resident protein (ERp44) via matrix-assisted laser desorption/ionisation time of flight (Maldi-ToF) analysis. Using immunofluorescence and flow cytometry assays, we observed re-localisation of HSP70/HSc70 and, to a lesser extent, BiP to the plasma membrane under stress conditions, such as during DENV infection. By performing binding and infection assays independently, we found that all 4 proteins participate in both processes, but to differing extents: HSP70/HSc70 is the most critical component, while ERp44 is less important. Viral infection was not inhibited when the cells were incubated with antibodies against all of the surface proteins after virus binding, which suggests that DENV entry to C6/36 cells is mediated by these proteins at the same step and not sequentially.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Dengue/virology , Virus Attachment , Virus Internalization , Aedes/cytology , Aedes/physiology , Animals , Blotting, Western , Cell Line , Endoplasmic Reticulum/physiology , Flow Cytometry , Fluorescent Antibody Technique , HSC70 Heat-Shock Proteins/physiology , HSP70 Heat-Shock Proteins/physiology , Mass Spectrometry , Membrane Proteins/physiology , Recombinant Proteins , Viral Envelope Proteins/physiology
11.
Arch Virol ; 158(3): 583-99, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23129130

ABSTRACT

Dengue virus is the most important arbovirus that affects humans, and it can establish persistent infections, especially in insect-derived cell cultures. Defective viral genomes have been implicated in the establishment and maintenance of persistent infections with several flaviviruses; however, there exists almost no information concerning defective dengue virus genomes. Here, we report the detection of defective dengue 2 virus genomes in persistently infected mosquito C6/36 cells. The defective viral genomes were detected at a low ratio compared with the wild-type genome. Deletions of approximately 147 residues (222-368) were found in the E protein, and these mainly affected domain III (73 %) of the protein; deletions of approximately 153 residues (4-156) and 228 residues (597-825) were found in the methyltransferase and polymerase domains, respectively, of the NS5 protein. The truncated versions of NS5 could be detected by western blot only in the protein extracts derived from persistently infected cells.


Subject(s)
Defective Viruses/genetics , Dengue Virus/genetics , Genome, Viral , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Aedes/virology , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cricetinae , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, RNA , Sequence Deletion , Viral Envelope Proteins/chemistry
12.
In Vivo ; 37(2): 933-939, 2023.
Article in English | MEDLINE | ID: mdl-36881093

ABSTRACT

BACKGROUND/AIM: There is increasing evidence that patients infected with SARS-CoV-2 develop neurological manifestations such as encephalitis. The purpose of this article was to present a case of viral encephalitis associated with SARS-CoV-2 in a 14-year-old child with Chiari malformation type I. CASE REPORT: The patient manifested frontal headache, nausea, vomiting, skin pallor, right side Babinski sign and was diagnosed with Chiari malformation type I. He was admitted with generalized seizures and suspected encephalitis. Brain inflammation and viral RNA in the cerebrospinal fluid suggested SARS-CoV-2 encephalitis. These findings indicate that the SARS-CoV-2 test in CSF of patients with neurological manifestations, confusion, and fever during the COVID-19 pandemic should be carried out even when there is no evidence of respiratory infection. To our knowledge, this presentation of encephalitis associated with COVID-19 has not yet been reported in a patient with a congenital syndrome such as Chiari malformation type I. CONCLUSION: Further clinical data are needed to determine the complications of encephalitis due to SARS-CoV-2 in patients with Chiari malformation type I to standardize diagnosis and treatment.


Subject(s)
Arnold-Chiari Malformation , COVID-19 , Encephalitis , Male , Humans , Child , Adolescent , COVID-19/complications , COVID-19/diagnosis , Arnold-Chiari Malformation/complications , Arnold-Chiari Malformation/diagnosis , SARS-CoV-2 , Pandemics , Encephalitis/diagnosis , Encephalitis/etiology
13.
Pathogens ; 12(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764943

ABSTRACT

Arboviruses are an important group of pathogens that cause diseases of medical and veterinary concern worldwide. The interactions of these viruses with their host cells are complex, and frequently, the coexistence of two different viruses in the same cell results in the inhibition of replication in one of the viruses, which is a phenomenon called viral interference. This phenomenon can be exploited to develop antiviral strategies. Insect cell lines persistently infected with arboviruses are useful models with which to study viral interference. In this work, a model of C6/36-HT cells (from Aedes albopictus mosquitoes) persistently infected with Dengue virus, serotype 2, was used. Viral interference was evaluated via plaque and flow cytometry assays. The presence of heterotypic interference against the other serotypes of the same virus and homologous interference against yellow fever virus was determined; however, this cell line did not display heterologous viral interference against Sindbis virus. The mechanisms responsible for viral interference have not been fully elucidated, but small RNAs could be involved. However, the silencing of Ago3, a key protein in the genome-derived P-element-induced wimpy testis pathway, did not alter the viral interference process, suggesting that viral interference occurs independent of this pathway.

14.
iScience ; 26(12): 108294, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38034354

ABSTRACT

Dengue virus (DENV) uses cellular nuclear transport machinery to import some proteins into the nucleus. Recently, the non-structural protein 3 (NS3) of DENV was localized in the nucleus of infected cells; however, its nuclear import mechanism is still unknown. In this study, we demonstrate that Ivermectin (IVM) inhibits the nuclear localization of NS3 through the inhibition of the Importin α/ß1 pathway. We also report that Atorvastatin (ATV) can modulate the nuclear transport of NS3 protease and NS5 polymerase of DENV-2. On the other hand, we found that IVM and ATV treatments reduce the alteration of nuclear pore complex (NPC) proteins, and an IVM+ATV combination reduced DENV infection both in vitro and in vivo. Hence, we conclude that ATV transport inhibition is an additional antiviral effect of this drug, suggesting a potential anti-DENV therapy in combination with IVM.

15.
Viruses ; 15(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37515153

ABSTRACT

Flaviviruses, including Dengue (DENV), Zika (ZIKV), and Yellow Fever (YFV) viruses, represent a significant global health burden. The development of effective antiviral therapies against these viruses is crucial to mitigate their impact. This study investigated the antiviral potential of the cholesterol-lowering drugs atorvastatin and ezetimibe in monotherapy and combination against DENV, ZIKV, and YFV. In vitro results demonstrated a dose-dependent reduction in the percentage of infected cells for both drugs. The combination of atorvastatin and ezetimibe showed a synergistic effect against DENV 2, an additive effect against DENV 4 and ZIKV, and an antagonistic effect against YFV. In AG129 mice infected with DENV 2, monotherapy with atorvastatin or ezetimibe significantly reduced clinical signs and increased survival. However, the combination of both drugs did not significantly affect survival. This study provides valuable insights into the potential of atorvastatin and ezetimibe as antiviral agents against flaviviruses and highlights the need for further investigations into their combined therapeutic effects.


Subject(s)
Dengue Virus , Dengue , Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Atorvastatin , Drug Repositioning , Ezetimibe , Cholesterol
16.
Sci Rep ; 12(1): 14956, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056114

ABSTRACT

The severity of coronavirus disease 2019 (COVID-19) quickly progresses with unfavorable outcomes due to the host immune response and metabolism alteration. Hence, we hypothesized that leukocyte glucose index (LGI) is a biomarker for severe COVID-19. This study involved 109 patients and the usefulness of LGI was evaluated and compared with other risk factors to predict COVID 19 severity. LGI was identified as an independent risk factor (odds ratio [OR] = 1.727, 95% confidence interval [CI]: 1.026-3.048, P = 0.041), with an area under the curve (AUC) of 0.749 (95% CI: 0.642-0.857, P < 0.0001). Interestingly, LGI was a potential risk factor (OR = 2.694, 95% CI: 1.575-5.283, Pcorrected < 0.05) for severe COVID-19 in female but not in male patients. In addition, LGI proved to be a strong predictor of the severity in patients with diabetes (AUC = 0.915 (95% CI: 0.830-1), sensitivity = 0.833, and specificity = 0.931). The AUC of LGI, together with the respiratory rate (LGI + RR), showed a considerable improvement (AUC = 0.894, 95% CI: 0.835-0.954) compared to the other biochemical and respiratory parameters analyzed. Together, these findings indicate that LGI could potentially be used as a biomarker of severity in COVID-19 patients.


Subject(s)
COVID-19 , Biomarkers , COVID-19/diagnosis , Female , Glucose , Glycemic Index , Humans , Leukocytes , Male
17.
Trop Med Infect Dis ; 7(2)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35202215

ABSTRACT

COVID-19 and dengue disease are challenging to tell apart because they have similarities in clinical and laboratory features during the acute phase of infection, leading to misdiagnosis and delayed treatment. The present study evaluated peripheral blood cell count accuracy to distinguish COVID-19 non-critical patients from non-severe dengue cases between the second and eleventh day after symptom onset. A total of 288 patients infected with SARS-CoV-2 (n = 105) or dengue virus (n = 183) were included in this study. Neutrophil, platelet, and lymphocyte counts were used to calculate the neutrophil-lymphocyte ratio (NLR), the platelet-lymphocyte ratio (PLR), and the neutrophil-lymphocyte*platelet ratio (NLPR). The logistic regression and ROC curves analysis revealed that neutrophil and platelet counts, NLR, LPR, and NLPR were higher in COVID-19 than dengue. The multivariate predictive model showed that the neutrophils, platelets, and NLPR were independently associated with COVID-19 with a good fit predictive value (p = 0.1041). The neutrophil (AUC = 0.95, 95% CI = 0.84-0.91), platelet (AUC = 0.89, 95% CI = 0.85-0.93) counts, and NLR (AUC = 0.88, 95% CI = 0.84-0.91) were able to discriminate COVID-19 from dengue with high sensitivity and specificity values (above 80%). Finally, based on predicted probabilities on combining neutrophils and platelets with NLR or NLPR, the adjusted AUC was 0.97 (95% CI = 0.94-0.98) to differentiate COVID-19 from dengue during the acute phase of infection with outstanding accuracy. These findings might suggest that the neutrophil, platelet counts, and NLR or NLPR provide a quick and cost-effective way to distinguish between dengue and COVID-19 in the context of co-epidemics in low-income tropical regions.

18.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35389245

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Mexico/epidemiology , Phylogeny , SARS-CoV-2/genetics
19.
Viruses ; 13(4)2021 04 19.
Article in English | MEDLINE | ID: mdl-33921849

ABSTRACT

Various viruses alter nuclear pore complex (NPC) integrity to access the nuclear content favoring their replication. Alteration of the nuclear pore complex has been observed not only in viruses that replicate in the nucleus but also in viruses with a cytoplasmic replicative cycle. In this last case, the alteration of the NPC can reduce the transport of transcription factors involved in the immune response or mRNA maturation, or inhibit the transport of mRNA from the nucleus to the cytoplasm, favoring the translation of viral mRNAs or allowing access to nuclear factors necessary for viral replication. In most cases, the alteration of the NPC is mediated by viral proteins, being the viral proteases, one of the most critical groups of viral proteins that regulate these nucleus-cytoplasmic transport changes. This review focuses on the description and discussion of the role of viral proteases in the modification of nucleus-cytoplasmic transport in viruses with cytoplasmic replicative cycles and its repercussions in viral replication.


Subject(s)
Nuclear Pore/metabolism , Viral Proteases/metabolism , Virus Replication , Viruses , Active Transport, Cell Nucleus , Cell Line , Humans , Viruses/metabolism , Viruses/pathogenicity
20.
Curr Opin Virol ; 49: 164-175, 2021 08.
Article in English | MEDLINE | ID: mdl-34171540

ABSTRACT

The flavivirus are emerging and re-emerging arthropod-borne pathogens responsible for significant mortality and morbidity worldwide. The genus comprises more than 70 viruses, and despite genomic and structural similarities, infections by different flaviviruses result in different clinical presentations. In the absence of a safe and effective vaccine against these infections, the search for new strategies to inhibit viral infection is necessary. The life cycle of arboviruses begins with the entry process composed of multiple steps: attachment, internalization, endosomal escape and capsid uncoating. This mini-review describes factors and mechanisms involved in the viral entry as events required to take over the cellular machinery and host factors and cellular pathways commonly used by flaviviruses as possible approaches for developing broad-spectrum antiviral drugs.


Subject(s)
Flavivirus Infections/virology , Flavivirus/physiology , Virus Internalization , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Endocytosis , Flavivirus/drug effects , Flavivirus/pathogenicity , Flavivirus Infections/drug therapy , Host-Pathogen Interactions , Humans , Receptors, Virus/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL