Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
Add more filters

Publication year range
1.
Brain ; 2024 Oct 26.
Article in English | MEDLINE | ID: mdl-39454566

ABSTRACT

Encephalitis with antibodies to leucine-rich glioma-inactivated 1 (LGI1-Ab-E) is a common form of autoimmune encephalitis, presenting with seizures and neuropsychiatric changes, predominantly in older males. More than 90% of patients carry the human leucocyte antigen (HLA) class II allele, HLA-DRB1*07:01. However, this is also present in 25% of healthy controls. Therefore, we hypothesised the presence of additional genetic predispositions. In this genome-wide association study and meta-analysis, we studied a discovery cohort of 131 French LGI1-Ab-E and a validation cohort of 126 American, British and Irish LGI1-Ab-E patients, ancestry-matched to 2613 and 2538 European controls, respectively. Outside the known major HLA signal, we found two single nucleotide polymorphisms (SNPs) at genome-wide significance (p < 5 x 10-8), implicating PTPRD, a protein tyrosine phosphatase, and LINC00670, a non-protein coding RNA gene. Meta-analysis defined four additional non-HLA loci, including the protein coding COBL gene. Polygenic risk scores with and without HLA variants proposed a contribution of non-HLA loci. In silico network analyses suggested LGI1 and PTPRD mediated interactions via the established receptors of LGI1, ADAM22 and ADAM23. Our results identify new genetic loci in LGI1-Ab-E. These findings present opportunities for mechanistic studies and offer potential markers of susceptibility, prognostics and therapeutic responses.

2.
Eur J Neurosci ; 60(6): 5266-5283, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39149798

ABSTRACT

Epilepsy is a neurological disease characterised by recurrent seizures with complex aetiology. Temporal lobe epilepsy, the most common form in adults, can be acquired following brain insults including trauma, stroke, infection or sustained status epilepticus. The mechanisms that give rise to the formation and maintenance of hyperexcitable networks following acquired insults remain unknown, yet an extensive body of literature points towards persistent gene and epigenomic dysregulation as a potential mediator of this dysfunction. While much is known about the function of specific classes of epigenetic regulators (writers and erasers) in epilepsy, much less is known about the enzymes, which read the epigenome and modulate gene expression accordingly. Here, we explore the potential role for the epigenetic reader bromodomain and extra-terminal domain (BET) proteins in epilepsy. Using the intra-amygdala kainic acid model of temporal lobe epilepsy, we initially identified widespread dysregulation of important epigenetic regulators including EZH2 and REST as well as altered BRD4 expression in chronically epileptic mice. BRD4 activity was also notably affected by epilepsy-provoking insults as seen by elevated binding to and transcriptional regulation of the immediate early gene Fos. Despite influencing early aspects of epileptogenesis, blocking BET protein activity with JQ1 had no overt effects on epilepsy development in mice but did alter glial reactivity and influence gene expression patterns, promoting various neurotransmitter signalling mechanisms and inflammatory pathways in the hippocampus. Together, these results confirm that epigenetic reader activity is affected by epilepsy-provoking brain insults and that BET activity may exert cell-specific actions on inflammation in epilepsy.


Subject(s)
Azepines , Disease Models, Animal , Epilepsy, Temporal Lobe , Gliosis , Hippocampus , Kainic Acid , Seizures , Triazoles , Animals , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/genetics , Triazoles/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Azepines/pharmacology , Mice , Seizures/metabolism , Seizures/drug therapy , Seizures/genetics , Kainic Acid/pharmacology , Gliosis/metabolism , Gliosis/drug therapy , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Epigenesis, Genetic/drug effects , Mice, Inbred C57BL , Gene Expression/drug effects , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Bromodomain Containing Proteins
3.
Epilepsia ; 65(5): 1451-1461, 2024 May.
Article in English | MEDLINE | ID: mdl-38491957

ABSTRACT

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Hippocampal Sclerosis , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Young Adult , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/etiology , Drug Resistant Epilepsy/pathology , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/pathology , Filamins/genetics , Genetic Variation , Hippocampal Sclerosis/genetics , Hippocampal Sclerosis/pathology , Malformations of Cortical Development/genetics , Malformations of Cortical Development/complications , Malformations of Cortical Development/pathology
4.
Epilepsia ; 65(10): 2897-2908, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39126356

ABSTRACT

OBJECTIVE: Women of childbearing age with juvenile absence epilepsy (JAE) face treatment challenges due to limited access to safe and effective anti-seizure medications (ASMs). In a previous study we compared the effectiveness of levetiracetam (LEV) and lamotrigine (LTG) in women with idiopathic generalized epilepsy (IGE), highlighting a superiority of LEV in juvenile myoclonic epilepsy. In this study, we specifically reanalyzed, through a Bayesian approach and by expanding the previously published cohort, the comparative effectiveness of these ASMs as initial monotherapy in JAE. METHODS: We conducted a multicenter, retrospective, comparative effectiveness study on women of childbearing age diagnosed with JAE and prescribed LEV or LTG as the initial ASM. Inverse probability treatment weighting (IPTW) Bayesian Cox proportional hazard models were employed to evaluate treatment failure (TF) due to ineffectiveness and ASM retention. The patients' center of provenance and year of prescription were considered as random effect factors. Posterior probabilities and relative log-risk distribution were computed, and the distribution of posterior draws was analyzed to assess the evidence supporting LTG superiority over LEV. RESULTS: Of 123 patients, those treated with LTG (n = 67) demonstrated lower TF and higher ASM retention than those treated with LEV (n = 56), with the IPTW-weighted Bayesian Cox proportional hazards model showing a 99.2% posterior probability of LTG being superior on TF and a 99.5% probability on ASM retention. Additional analyses on ≥50% and ≥75% seizure reduction through IPTW-weighted Bayesian logistic regression largely confirmed these findings, whereas the two ASMs did not show evident differences in terms of seizure freedom. The two ASMs showed comparable safety profiles, with only a minority of patients discontinuing treatment due to side effects. SIGNIFICANCE: Bayesian reanalysis supports LTG as first-line monotherapy for JAE in women of childbearing age, emphasizing the importance of individualized treatment strategies in women with IGE. This study underscores the value of Bayesian methods in refining clinical research and treatment decisions.


Subject(s)
Anticonvulsants , Bayes Theorem , Epilepsy, Absence , Lamotrigine , Levetiracetam , Humans , Levetiracetam/therapeutic use , Female , Lamotrigine/therapeutic use , Anticonvulsants/therapeutic use , Retrospective Studies , Adult , Epilepsy, Absence/drug therapy , Young Adult , Adolescent , Treatment Outcome , Proportional Hazards Models
5.
Ann Neurol ; 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36534060

ABSTRACT

OBJECTIVE: Genetic factors have long been debated as a cause of failure of surgery for mesial temporal lobe epilepsy (MTLE). We investigated whether rare genetic variation influences seizure outcomes of MTLE surgery. METHODS: We performed an international, multicenter, whole exome sequencing study of patients who underwent surgery for drug-resistant, unilateral MTLE with normal magnetic resonance imaging (MRI) or MRI evidence of hippocampal sclerosis and ≥2-year postsurgical follow-up. Patients with either sustained seizure freedom (favorable outcome) or ongoing uncontrolled seizures since surgery (unfavorable outcome) were included. Exomes of controls without epilepsy were also included. Gene set burden analyses were carried out to identify genes with significant enrichment of rare deleterious variants in patients compared to controls. RESULTS: Nine centers from 3 continents contributed 206 patients operated for drug-resistant unilateral MTLE, of whom 196 (149 with favorable outcome and 47 with unfavorable outcome) were included after stringent quality control. Compared to 8,718 controls, MTLE cases carried a higher burden of ultrarare missense variants in constrained genes that are intolerant to loss-of-function (LoF) variants (odds ratio [OR] = 2.6, 95% confidence interval [CI] = 1.9-3.5, p = 1.3E-09) and in genes encoding voltage-gated cation channels (OR = 2.4, 95% CI = 1.4-3.8, p = 2.7E-04). Proportions of subjects with such variants were comparable between patients with favorable outcome and those with unfavorable outcome, with no significant between-group differences. INTERPRETATION: Rare variation contributes to the genetic architecture of MTLE, but does not appear to have a major role in failure of MTLE surgery. These findings can be incorporated into presurgical decision-making and counseling. ANN NEUROL 2022.

6.
Am J Med Genet A ; 191(2): 469-478, 2023 02.
Article in English | MEDLINE | ID: mdl-36426740

ABSTRACT

The non-POU domain-containing octamer-binding (NONO) protein is involved in multiple steps of gene regulation such as RNA metabolism and DNA repair. Hemizygous pathogenic variants in the NONO gene were confirmed to cause a rare X-linked syndromic disorder. Through our in-house diagnostics and subsequent matchmaking, we identified six unrelated male individuals with pathogenic or likely pathogenic NONO variants. For a detailed comparison, we reviewed all published characterizations of the NONO-associated disorder. The combined cohort consists of 16 live-born males showing developmental delay, corpus callosum anomalies, non-compaction cardiomyopathy and relative macrocephaly as leading symptoms. Seven prenatal literature cases were characterized by cardiac malformations. In this study, we extend the phenotypic spectrum through two more cases with epilepsy as well as two more cases with hematologic anomalies. By RNA expression analysis and structural modeling of a new in-frame splice deletion, we reinforce loss-of-function as the pathomechanism for the NONO-associated syndromic disorder.


Subject(s)
Cardiomyopathies , Heart Defects, Congenital , Humans , Male , DNA-Binding Proteins/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Cardiomyopathies/genetics , Genes, X-Linked , RNA , RNA-Binding Proteins/genetics
7.
Epilepsia ; 64(5): 1225-1235, 2023 05.
Article in English | MEDLINE | ID: mdl-36790345

ABSTRACT

OBJECTIVE: Recent clinical trials have shown that cenobamate substantially improves seizure control in focal-onset drug-resistant epilepsy (DRE). However, little is known about cenobamate's performance in highly active (≥20 seizures/month) and ultra-refractory focal epilepsy (≥6 failed epilepsy treatments, including antiseizure medications [ASMs], epilepsy surgery, and vagus nerve stimulation). Here, we studied cenobamate's efficacy and tolerability in a "real-world" severe DRE cohort. METHODS: We conducted a single-center retrospective analysis of consecutive adults treated with cenobamate between October 2020 and September 2022. All patients received cenobamate through an Early Access Program. Cenobamate retention, seizure outcomes, treatment-emergent adverse events, and adjustments to concomitant ASMs were analyzed. RESULTS: Fifty-seven patients received cenobamate for at least 3 months (median duration, 11 months). The median cenobamate dose was 250 mg/day (range 75-350 mg). Baseline demographics were consistent with highly active (median seizure frequency, 60/month) and ultra-refractory epilepsy (median previously failed ASMs, nine). Most (87.8%) had prior epilepsy surgery and/or vagus nerve stimulation. Six patients stopped cenobamate due to lack of efficacy and/or adverse events. One patient died from factors unrelated to cenobamate. Among patients who continued cenobamate, three achieved seizure freedom (5.3% of cohort), 24 had a 75%-99% reduction in seizures (42.1% of cohort), and 16 had a 50%-74% reduction (28.1% of cohort). Cenobamate led to abolition of focal to bilateral tonic-clonic seizures in 55.6% (20/36) of patients. Among treatment responders, 67.4% (29/43) were treated with cenobamate doses of ≥250 mg/day. Three-fourths of patients reported at least one side-effect, most commonly fatigue and somnolence. Adverse events most commonly emerged at cenobamate doses of ≥250 mg/day. Side-effects were partially manageable by reducing the overall ASM burden, most often clobazam, eslicarbazepine, and perampanel. SIGNIFICANCE: Patients with highly active and ultra-refractory focal epilepsy experienced meaningful seizure outcomes on cenobamate. Emergence of adverse events at doses above 250 mg/day may limit the potential for further improvements in seizure control at higher cenobamate doses.


Subject(s)
Drug Resistant Epilepsy , Drug-Related Side Effects and Adverse Reactions , Epilepsies, Partial , Adult , Humans , Drug Resistant Epilepsy/drug therapy , Retrospective Studies , Epilepsies, Partial/drug therapy , Seizures
8.
Epilepsia ; 64(10): 2827-2840, 2023 10.
Article in English | MEDLINE | ID: mdl-37543852

ABSTRACT

OBJECTIVE: Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood. METHODS: Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma. RESULTS: Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day. SIGNIFICANCE: Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.


Subject(s)
CLOCK Proteins , Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Melatonin , RNA-Binding Proteins , Status Epilepticus , Animals , Humans , Male , Mice , Epilepsy, Temporal Lobe/metabolism , Hippocampus , Melatonin/blood , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Seizures , Status Epilepticus/chemically induced , Status Epilepticus/genetics , Transcription Factors/metabolism , CLOCK Proteins/genetics
9.
Eur J Neurol ; 30(10): 3341-3346, 2023 10.
Article in English | MEDLINE | ID: mdl-37422919

ABSTRACT

BACKGROUND: Pathogenic variants in the GAP activity towards RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2, NPRL3) cause focal epilepsy through hyperactivation of the mechanistic target of rapamycin pathway. We report our experience using everolimus in patients with refractory GATOR1-related epilepsy. METHODS: We performed an open-label observational study of everolimus for drug-resistant epilepsy caused by variants in DEPDC5, NPRL2 and NPRL3. Everolimus was titrated to a target serum concentration (5-15 ng/mL). The primary outcome measure was change in mean monthly seizure frequency compared with baseline. RESULTS: Five patients were treated with everolimus. All had highly active (median baseline seizure frequency, 18/month) and refractory focal epilepsy (failed 5-16 prior anti-seizure medications). Four had DEPDC5 variants (three loss-of-function, one missense) and one had a NPRL3 splice-site variant. All patients with DEPDC5 loss-of-function variants had significantly reduced seizures (74.3%-86.1%), although one stopped everolimus after 12 months due to psychiatric symptoms. Everolimus was less effective in the patient with a DEPDC5 missense variant (43.9% seizure frequency reduction). The patient with NPRL3-related epilepsy had seizure worsening. The most common adverse event was stomatitis. CONCLUSIONS: Our study provides the first human data on the potential benefit of everolimus precision therapy for epilepsy caused by DEPDC5 loss-of-function variants. Further studies are needed to support our findings.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Humans , Everolimus/adverse effects , Epilepsies, Partial/drug therapy , Epilepsies, Partial/genetics , GTPase-Activating Proteins/genetics , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/genetics
10.
Brain ; 145(4): 1285-1298, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35333312

ABSTRACT

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Subject(s)
Connectome , Epilepsy, Temporal Lobe , Adult , Atrophy/pathology , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Humans , Magnetic Resonance Imaging
11.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Article in English | MEDLINE | ID: mdl-34388852

ABSTRACT

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Subject(s)
Epilepsy , Microglia , Animals , Brain , Endothelial Cells , Epilepsy/metabolism , Mice , Microglia/metabolism , Seizures
12.
Ann Neurol ; 90(3): 464-476, 2021 09.
Article in English | MEDLINE | ID: mdl-34288049

ABSTRACT

OBJECTIVE: Psychoses affecting people with epilepsy increase disease burden and diminish quality of life. We characterized postictal psychosis, which comprises about one quarter of epilepsy-related psychoses, and has unknown causation. METHODS: We conducted a case-control cohort study including patients diagnosed with postictal psychosis, confirmed by psychiatric assessment, with available data regarding epilepsy, treatment, psychiatric history, psychosis profile, and outcomes. After screening 3,288 epilepsy patients, we identified 83 with psychosis; 49 had postictal psychosis. Controls were 98 adults, matched by age and epilepsy type, with no history of psychosis. Logistic regression was used to investigate clinical factors associated with postictal psychosis; univariate associations with a p value < 0.20 were used to build a multivariate model. Polygenic risk scores for schizophrenia were calculated. RESULTS: Cases were more likely to have seizure clustering (odds ratio [OR] = 7.59, p < 0.001), seizures with a recollected aura (OR = 2.49, p = 0.013), and a family history of psychiatric disease (OR = 5.17, p = 0.022). Cases showed predominance of right temporal epileptiform discharges (OR = 4.87, p = 0.007). There was no difference in epilepsy duration, neuroimaging findings, or antiseizure treatment between cases and controls. Polygenic risk scores for schizophrenia in an extended cohort of postictal psychosis cases (n = 58) were significantly higher than in 1,366 epilepsy controls (R2  = 3%, p = 6 × 10-3 ), but not significantly different from 945 independent patients with schizophrenia (R2  = 0.1%, p = 0.775). INTERPRETATION: Postictal psychosis occurs under particular circumstances in people with epilepsy with a heightened genetic predisposition to schizophrenia, illustrating how disease biology (seizures) and trait susceptibility (schizophrenia) may interact to produce particular outcomes (postictal psychosis) in a common disease. ANN NEUROL 2021;90:464-476.


Subject(s)
Epilepsy/genetics , Epilepsy/physiopathology , Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/genetics , Psychotic Disorders/physiopathology , Adult , Case-Control Studies , Cohort Studies , Electroencephalography/methods , Epilepsy/complications , Female , Humans , Male , Middle Aged , Psychotic Disorders/etiology , Retrospective Studies
13.
Am J Med Genet A ; 188(5): 1407-1419, 2022 05.
Article in English | MEDLINE | ID: mdl-35088532

ABSTRACT

To evaluate the quality of whole-exome sequencing (WES) reporting in the epilepsy literature. We aimed to assess the quality of reporting of WES in epilepsy. We compared studies based on journal type and if outcome reporting biases exist. We used a self-constructed benchmark to quantitatively analyze studies. We included 451 publications. Reporting was heterogeneous with poor reporting of (1) ACMG guideline application 13% and (2) Human Phenotype Ontology (HPO) numbers in 3% of studies, 3) VUS in 19%. Predictors of reporting included journal type and journal impact factor. Date of publication and publication type were not predictors of poor reporting. Pairwise comparisons of genetics versus neurology journals using relative risks yielded significant differences in reporting of ACMG guideline application (RR 1.88, 95% CI 1.04-3.38); HPO numbers (RR 8.62, 95% CI 1.08-63.37) and deposition of findings to ClinVar (RR 2.50, 95% CI 1.03-6.1). Reporting of WES literature is heterogeneous in quality, and poor reporting hinders collaboration and accession of data into large databases like OMIM and OrphaNet. This study highlights reporting bias in this area and, formal structural guidelines like the CONSORT guidelines used in the reporting of clinical trials are needed to address the issue.


Subject(s)
Epilepsy , Epilepsy/genetics , Humans , Exome Sequencing
14.
Am J Med Genet A ; 188(1): 138-146, 2022 01.
Article in English | MEDLINE | ID: mdl-34569149

ABSTRACT

Large international consortia examining the genomic architecture of the epilepsies focus on large diagnostic subgroupings such as "all focal epilepsy" and "all genetic generalized epilepsy". In addition, phenotypic data are generally entered into these large discovery databases in a unidirectional manner at one point in time only. However, there are many smaller phenotypic subgroupings in epilepsy, many of which may have unique genomic risk factors. Such a subgrouping or "microphenotype" may be defined as an uncommon or rare phenotype that is well recognized by epileptologists and the epilepsy community, and which may or may not be formally recognized within the International League Against Epilepsy classification system. Here we examine the genetic structure of a number of such microphenotypes and report in particular on two interesting clinical phenotypes, Jeavons syndrome and pediatric status epilepticus. Although no single gene reached exome-wide statistical significance to be associated with any of the diagnostic categories, we observe enrichment of rare damaging variants in established epilepsy genes among Landau-Kleffner patients (GRIN2A) and pediatric status epilepticus patients (MECP2, SCN1A, SCN2A, SCN8A).


Subject(s)
Epilepsy, Generalized , Epilepsy , Child , Epilepsy/diagnosis , Epilepsy/genetics , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Exome , Genomics , Humans , Phenotype
15.
Epilepsia ; 63(8): e92-e99, 2022 08.
Article in English | MEDLINE | ID: mdl-35656590

ABSTRACT

Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections. Brain specimens were obtained from patients undergoing resective surgery to treat pharmacoresistant epilepsy. Neocortical specimens were submerged in modified artificial cerebrospinal fluid (ACSF) and dissected for clinical neuropathological examination, and unused material was transferred for sectioning. Individual sections were incubated in oxygenated ACSF, containing either ant-134 or a nontargeting control antimiR, for 24 h at room temperature. RNA integrity was assessed using BioAnalyzer processing, and individual miRNA levels were measured using quantitative reverse transcriptase polymerase chain reaction. Specimens transported in ACSF could be used for neuropathological diagnosis and had good RNA integrity. Ant-134 mediated a dose-dependent knockdown of miR-134, with approximately 75% reduction of miR-134 at 1 µmol L-1 and 90% reduction at 3 µmol L-1 . These doses did not have off-target effects on expression of a selection of three other miRNAs. This is the first demonstration of ant-134 effects in live human brain tissues. The findings lend further support to the preclinical development of a therapy that targets miR-134 and offer a flexible platform for the preclinical testing of antimiRs, and other antisense oligonucleotide therapeutics, in human brain.


Subject(s)
MicroRNAs , Brain/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oligonucleotides , Oligonucleotides, Antisense
16.
Epilepsia ; 63(6): 1563-1570, 2022 06.
Article in English | MEDLINE | ID: mdl-35298028

ABSTRACT

OBJECTIVE: Levetiracetam (LEV) is an effective antiseizure medicine, but 10%-20% of people treated with LEV report psychiatric side-effects, and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioral ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioral disorder (n = 149) or psychotic reaction (n = 37) to LEV-exposed people with no history of psychiatric ADRs (n = 920). All samples were of European ancestry. We performed genome-wide association study (GWAS) analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n = 18) and controls (n = 122). RESULTS: Univariate GWAS found no significant associations with either LEV-associated behavioural disorder or LEV-psychotic reaction. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to contr ols (p = .0097, estimate = .4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV ADRs.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Genome-Wide Association Study , Anticonvulsants/adverse effects , Case-Control Studies , Genetic Predisposition to Disease/genetics , Humans , Levetiracetam/adverse effects , Pharmacogenetics , Prospective Studies
17.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Article in English | MEDLINE | ID: mdl-35656586

ABSTRACT

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Atrophy/pathology , Biomarkers , Cross-Sectional Studies , Epilepsy/complications , Epilepsy, Temporal Lobe/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Sclerosis/complications
18.
Epilepsy Behav ; 136: 108919, 2022 11.
Article in English | MEDLINE | ID: mdl-36166879

ABSTRACT

OBJECTIVE: Long-term video-electroencephalographic (LTVEM) monitoring is a valuable tool in the evaluation of paroxysmal clinical events. However, vEEG itself is costly. Hence, we aimed to establish if longer duration of monitoring (DOM) is associated with higher diagnostic yield. METHOD: A retrospective review of patients admitted into the epilepsy monitoring unit (EMU) for the diagnostic evaluation of paroxysmal events was performed. Patients' demographic, clinical characteristics, and vEEG data were analyzed. In the cohort of patients with DOM > 7 days, the reasons for prolonged DOM were identified and the differences in clinical characteristics and vEEG data between conclusive and inconclusive studies were analyzed. RESULT: A total of 501 patients were included. Four hundred and thirty-six (87 %) patients had conclusive studies. Of these patients, 67.9 % patients with conclusive studies received diagnosis within the first 7 days of monitoring with the highest on day 7. The likelihood of conclusive studies decreased beyond 7 days. A total of 175 had DOM > 7 days, of which 140 (80 %) had conclusive studies. In the cohort with DOM > 7 days, patients with previous abnormal routine EEG, previous vEEG monitoring, first event recorded before day 5 of admission and ≥1 events recorded during vEEG monitoring were more likely to have conclusive studies. The most common reason for prolonging DOM beyond 7 days was to adequately record multiple semiologically distinctive events (76 %). CONCLUSION: Our study supports that longer DOM is associated with an increase in diagnostic yield. More than one-third of our cohort were monitored beyond 7 days with majority (80 %) being conclusive. Our findings may guide clinicians in planning the DOM and predicting the likelihood of conclusive vEEG studies in patients with prolonged DOM based on the clinical characteristics and vEEG data.


Subject(s)
Epilepsy , Humans , Retrospective Studies , Epilepsy/diagnosis , Electroencephalography , Monitoring, Physiologic , Cohort Studies , Video Recording
19.
EMBO J ; 36(12): 1770-1787, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28487411

ABSTRACT

Synaptic downscaling is a homeostatic mechanism that allows neurons to reduce firing rates during chronically elevated network activity. Although synaptic downscaling is important in neural circuit development and epilepsy, the underlying mechanisms are poorly described. We performed small RNA profiling in picrotoxin (PTX)-treated hippocampal neurons, a model of synaptic downscaling. Thereby, we identified eight microRNAs (miRNAs) that were increased in response to PTX, including miR-129-5p, whose inhibition blocked synaptic downscaling in vitro and reduced epileptic seizure severity in vivo Using transcriptome, proteome, and bioinformatic analysis, we identified the calcium pump Atp2b4 and doublecortin (Dcx) as miR-129-5p targets. Restoring Atp2b4 and Dcx expression was sufficient to prevent synaptic downscaling in PTX-treated neurons. Furthermore, we characterized a functional crosstalk between miR-129-5p and the RNA-binding protein (RBP) Rbfox1. In the absence of PTX, Rbfox1 promoted the expression of Atp2b4 and Dcx. Upon PTX treatment, Rbfox1 expression was downregulated by miR-129-5p, thereby allowing the repression of Atp2b4 and Dcx. We therefore identified a novel activity-dependent miRNA/RBP crosstalk during synaptic scaling, with potential implications for neural network homeostasis and epileptogenesis.


Subject(s)
Gene Expression Regulation , MicroRNAs/metabolism , RNA Splicing Factors/metabolism , Synapses/physiology , Animals , Computational Biology , Doublecortin Domain Proteins , Doublecortin Protein , Gene Expression Profiling , Hippocampus/drug effects , Hippocampus/physiology , Mice , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolism , Picrotoxin/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Proteome/analysis
20.
J Neurol Neurosurg Psychiatry ; 92(10): 1089-1095, 2021 10.
Article in English | MEDLINE | ID: mdl-34400540

ABSTRACT

OBJECTIVES: We aimed to define the clinical and serological characteristics of pan-neurofascin antibody-positive patients. METHODS: We tested serum from patients with suspected immune-mediated neuropathies for antibodies directed against nodal/paranodal protein antigens using a live cell-based assay and solid-phase platform. The clinical and serological characteristics of antibody-positive and seronegative patients were then compared. Sera positive for pan-neurofascin were also tested against live myelinated human stem cell-derived sensory neurons for antibody binding. RESULTS: Eight patients with IgG1-subclass antibodies directed against both isoforms of the nodal/paranodal cell adhesion molecule neurofascin were identified. All developed rapidly progressive tetraplegia. Cranial nerve deficits (100% vs 26%), autonomic dysfunction (75% vs 13%) and respiratory involvement (88% vs 14%) were more common than in seronegative patients. Four patients died despite treatment with one or more modalities of standard immunotherapy (intravenous immunoglobulin, steroids and/or plasmapheresis), whereas the four patients who later went on to receive the B cell-depleting therapy rituximab then began to show progressive functional improvements within weeks, became seronegative and ultimately became functionally independent. CONCLUSIONS: IgG1 pan-neurofascin antibodies define a very severe autoimmune neuropathy. We urgently recommend trials of targeted immunotherapy for this serologically classified patient group.


Subject(s)
Autoantibodies , Immunoglobulin G/immunology , Peripheral Nervous System Diseases/mortality , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Male , Middle Aged , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL