Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Neurobiol Learn Mem ; 162: 15-22, 2019 07.
Article in English | MEDLINE | ID: mdl-31047996

ABSTRACT

Reciprocal connections between the mediodorsal thalamic nucleus (MD) and the prefrontal cortex (PFC) are important for memory processes. Since the co-abuse of nicotine and ethanol affects memory formation, this study investigated the effect of nitric oxide inhibition in the MD on memory retrieval induced by co-administration of nicotine and ethanol. Subsequently, western blot analysis was used to evaluate how this change would alter the PFC pCREB/CREB signaling pathway. Male Wistar rats were bilaterally cannulated into the MD and the memory retrieval was measured by passive avoidance task. Intraperitoneal (i.p.) administration of ethanol (1 g/kg, i.p) 30 min before the test impaired memory retrieval and caused ethanol-induced amnesia. Subcutaneous (s.c.) administration of nicotine (0.05-0.2 mg/kg, s.c.) prevented ethanol-induced amnesia and improved memory retrieval. Intra-MD microinjection of a nitric oxide synthase (NOS) inhibitor, L-NAME (0.5-1 µg/rat) inhibited the improving effect of nicotine (0.2 mg/kg, s.c.) on ethanol-induced amnesia, while intra-MD microinjection of a precursor of nitric oxide, l-arginine (0.25-1 µg/rat), potentiated such effect. Noteworthy, intra-MD microinjection of the same doses of L-NAME or l-arginine by itself had no effect on memory retrieval. Furthermore, intra-MD microinjection of L-NAME (0.05, 0.1 and 0.3 µg/rat) reversed the l-arginine improving effect on nicotine response. Successful memory retrieval significantly increased the p-CREB/CREB ratio in the PFC tissue. Ethanol-induced amnesia, however, decreased this ratio in the PFC while the co-administration of nicotine and ethanol increased the PFC CREB signaling. Interestingly, the inhibitory effect of L-NAME and the potentiating effect of l-arginine on nicotine response were associated with the decrease and increase of the PFC p-CREB/CREB ratio respectively. It can be concluded that MD-PFC connections are involved in the combined effects of nicotine and ethanol on memory retrieval. The mediodorsal thalamic NO system possibly mediated this interaction via the pCREB/CREB signaling pathways in the PFC.


Subject(s)
Ethanol/pharmacology , Mediodorsal Thalamic Nucleus/drug effects , Mental Recall/drug effects , Nicotine/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Prefrontal Cortex/drug effects , Signal Transduction/drug effects , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Enzyme Inhibitors/pharmacology , Male , Mediodorsal Thalamic Nucleus/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nicotinic Agonists/pharmacology , Nitric Oxide/metabolism , Phosphorylation/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar
2.
Behav Brain Res ; 438: 114213, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36372242

ABSTRACT

The present study investigated the involvement of mediodorsal thalamic (MD) GABA-A receptors in cetirizine/morphine-induced anti-allodynia using a rat model of neuropathic pain. To assess the importance of the prefrontal cortex (PFC) for chronic pain processing, its expression level changes of glial fibrillary acidic protein (GFAP) were measured following drug treatments. Each animal was subjected to chronic constriction of the sciatic nerve surgery simultaneously with the MD cannulation under stereotaxic surgery. The results showed that the administration of morphine (3-5 mg/kg) or cetirizine (1-3 mg/kg) produced significant analgesia in neuropathic rats. Systemic administration of cetirizine (2.5 and 3 mg/kg) potentiated the analgesic response to a low and intolerance dose of morphine (3 mg/kg). Intra-MD microinjection of muscimol, a selective GABA-A receptor agonist (0.005-0.01 µg/rat), increased the cetirizine/morphine-induced anti-allodynia, while muscimol by itself did not affect neuropathic pain. The neuropathic pain was associated with the increased PFC expression level of GFAP, suggesting the impact of chronic pain on PFC glial management. Interestingly, the anti-allodynia was associated with a decrease in the PFC expression level of GFAP under the drugs' co-administration. Thus, cetirizine has a significant potentiating effect on morphine response in neuropathic pain via interacting with the MD GABA-A receptors. It seems that neuropathic pain affects the prefrontal cortex GFAP signaling pathway. In clinical studies, these findings can be considered to create a combination therapy with low doses of GABA-A receptor agonist plus cetirizine and morphine to manage neuropathic pain.


Subject(s)
Chronic Pain , Neuralgia , Rats , Animals , Morphine/pharmacology , Receptors, GABA-A/metabolism , Cetirizine/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Chronic Pain/drug therapy , Muscimol/pharmacology , GABA-A Receptor Agonists/pharmacology , Neuralgia/drug therapy , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Prefrontal Cortex/metabolism , Disease Models, Animal
3.
Exp Neurol ; 370: 114560, 2023 12.
Article in English | MEDLINE | ID: mdl-37783412

ABSTRACT

The present study aimed to investigate the effect of corticolimbic cannabinoid CB1 receptors activity on memory impairment in the intracerebroventricular (ICV)-streptozotocin (STZ) animal model of Alzheimer's like-disease. This study also assessed whether the corticolimbic overexpression of miRNA-137 or -let-7a could increase the endocannabinoids by inhibiting the monoglyceride lipase (MAGL) to ameliorate STZ response. The results showed that ICV microinjection of STZ (3 mg/kg/10 µl) impaired passive avoidance memory retrieval. The chronic microinjection of arachidonylcyclopropylamide (ACPA; 10 ng/0.5 µl), a selective cannabinoid CB1 receptor agonist, into the hippocampal CA1 region, the central amygdala (CeA) or the medial prefrontal cortex (mPFC) ameliorated the amnesic effect of ICV-STZ. Intra-CA1 or -CeA microinjection of ACPA alone did not affect memory retrieval, while its microinjection into the mPFC impaired memory formation. Based on bioinformatics analysis and verification of the MAGL gene, miRNA-137 and -let-7a were chosen to target the expression levels of MAGL in the corticolimbic regions. The chronic corticolimbic microinjection of lentiviral particles containing miRNA-137 or -let-7a ameliorated ICV-STZ-induced memory impairment. The high transfection efficiency was determined for each virus using comparing fluorescent and conventional vision. Corticolimbic overexpression of miRNA-137 or -let-7a decreased the MAGL gene expression that encodes the MAGL enzyme to increase the endocannabinoids. Thus, among the molecular mechanisms and signaling pathways involved in the pathophysiology of Alzheimer's disease (AD), it is worth mentioning the role of endocannabinoids in the corticolimbic regions. CB1 receptor agonists, miRNA-137 or -let-7a, may be potential therapeutic targets against cognitive decline in AD.


Subject(s)
Alzheimer Disease , Cannabinoids , Rats , Animals , Streptozocin , Rats, Wistar , Endocannabinoids/therapeutic use , Endocannabinoids/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Microinjections , Receptor, Cannabinoid, CB1/therapeutic use , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Cannabinoid Receptor Agonists/therapeutic use , Cannabinoids/therapeutic use , Disease Models, Animal
4.
Pharmacol Biochem Behav ; 232: 173650, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37778541

ABSTRACT

The present study aimed to evaluate the functional interaction between the dopaminergic and glutamatergic systems of the mediodorsal thalamus (MD), the ventral hippocampus (VH), and the prefrontal cortex (PFC) in nicotine-induced anxiogenic-like behaviors. Brain-derived neurotrophic factor (BDNF) level changes were measured in the targeted brain areas following the drug treatments. The percentage of time spent in the open arm (% OAT) and open arm entry (% OAE) were calculated in the elevated plus maze (EPM) to measure anxiety-related behaviors in adult male Wistar rats. Systemic administration of nicotine at a dose of 0.5 mg/kg induced an anxiogenic-like response associated with decreased BDNF levels in the hippocampus and the PFC. Intra-MD microinjection of apomorphine (0.1-0.3 µg/rat) induced an anxiogenic-like response, while apomorphine inhibited nicotine-induced anxiogenic-like behaviors associated with increased hippocampal and PFC BDNF expression levels. Interestingly, the blockade of the VH or the PFC NMDA receptors via the microinjection of D-AP5 (0.3-0.5 µg/rat) into the targeted sites reversed the inhibitory effect of apomorphine (0.5 µg/rat, intra-MD) on the nicotine response and led to the decrease of BDNF levels in the hippocampus and the PFC. Also, the microinjection of a higher dose of D-AP5 (0.5 µg/rat, intra-PFC) alone produced an anxiogenic effect. These findings suggest that the functional interaction between the MD dopaminergic D1/D2-like and the VH/PFC glutamatergic NMDA receptors may be partially involved in the anxiogenic-like effects of nicotine, likely via the alteration of BDNF levels in the hippocampus and the PFC.

5.
Int J Biol Macromol ; 226: 1166-1177, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36427623

ABSTRACT

As an active ingredient in its derivative products, glyphosate has emerged as the most widespread herbicide in recent decades. Bovine serum albumin (BSA) as a carrier protein may be adversely affected by structural changes due to binding affinity with glyphosate, which may lead to dysfunctionality or metabolic disorders. This study aimed to investigate the interaction of glyphosate with BSA and its thermal fibrillation pathway employing techniques such as dynamic surface tension, fluorescence quenching, ThT binding, circular dichroism spectroscopy, and reactive oxygen species (ROS) measurement, as well as molecular dynamics (MD) studies. The adsorption dynamic analysis suggested hydrophobic moiety at higher concentrations of glyphosate upon interaction with BSA. MD results suggested a slight fluctuation due to glyphosate interaction with protein molecules. The carboxy group presented in glyphosate made a hydrogen bond with the hydroxyl group of TYR147. The fluorescence quenching and diffusion studies approved BSA's increased unfolding and hydrophobicity resulting from glyphosate interaction, which would induce fibrillation/aggregation, according to our fibrillation kinetics data. The surface activity of glyphosate at higher concentrations and its approved involvement in structural changes of BSA through hydrogen bonding may raise concerns about its potential side effect on farm animals and the food cycle.


Subject(s)
Amyloidogenic Proteins , Serum Albumin, Bovine , Animals , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Circular Dichroism , Amyloidogenic Proteins/metabolism , Protein Binding , Thermodynamics , Binding Sites , Glyphosate
6.
J Phys Chem B ; 126(8): 1640-1654, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35090112

ABSTRACT

Transthyretin (TTR) aggregation via misfolding of a mutant or wild-type protein leads to systemic or partial amyloidosis (ATTR). Here, we utilized variable biophysical assays to characterize two distinct aggregation pathways for mTTR (a synthesized monomer TTR incapable of association into a tetramer) at pH 4.3 and also pH 7.4 with agitation, referred to as mTTR aggregation and fibrillation, respectively. The findings suggest that early-stage conformational changes termed monomer activation here determine the aggregation pathway, resulting in developing either amorphous aggregates or well-organized fibrils. Less packed partially unfolded monomers consisting of more non-regular secondary structures that were rapidly produced via a mildly acidic condition form amorphous aggregates. Meanwhile, more hydrophobic and packed monomers consisting of rearranged ß sheets and increased helical content developed well-organized fibrils. Conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with leucine and glutamine (L-SPIONs and G-SPIONs in order) via a trimethoxysilane linker provided the chance to study the effect of hydrophobic/hydrophilic surfaces on mTTR aggregation. The results indicated a powerful inhibitory effect of hydrophobic L-SPIONs on both mTTR aggregation and fibrillation. Monomer depletion was introduced as the governing mechanism for inhibiting mTTR aggregation, while a chaperone-like property of L-SPIONs by maintaining an mTTR native structure and adsorbing oligomers suppressed the progression of further fibril formation.


Subject(s)
Amino Acids , Amyloid , Amyloid/chemistry , Magnetic Iron Oxide Nanoparticles , Molecular Chaperones/metabolism , Protein Conformation, beta-Strand , Protein Structure, Secondary
7.
Iran J Basic Med Sci ; 25(6): 675-682, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949308

ABSTRACT

Objectives: Multiple Sclerosis (MS) is an inflammatory disorder wherein the myelin of nerve cells in the central nervous system is damaged. In the current study, we assessed the effect of Dapsone (DAP) on the improvement of behavioral dysfunction and preservation of myelin in the cuprizone (CPZ) induced demyelination model via targeting Nrf2 and IKB. Materials and Methods: MS was induced in C57BL/6 mice through diet supplementation of CPZ (0.2%) for 6 weeks, and DAP (12.5 mg/kg/day; IP) was administered for the last 2 weeks of treatment. Pole test and rotarod performance test, LFB and H&E staining, and Immunohistochemistry (IHC) staining of p-Nrf2 and p-IKB were performed. Furthermore, superoxide dismutase (SOD) and nitrite were measured. Results: DAP treatment prevented body loss induced by CPZ (P<0.001). Pole test showed that CPZ increased latency time to fall (P<0.0001) but the latency to reach the floor in the DAP-CPZ group was significantly shorter (P<0.0001). Rotarod performance test showed the effect of CPZ in reducing fall time in the CPZ group (P<0.0014); however, DAP significantly increased fall time (P=0.0012). In LFB staining, DAP reduced demyelination induced by CPZ. CPZ significantly decreased p-Nrf2 and elevated p-IKB levels compared with the control group (P<0.0001), but in DAP-treated groups markedly modified these changes (P<0.0001). CPZ increased the brain nitrite levels and reduced SOD activity, but in DAP-treated considerably reversed CPZ-induced changes. Conclusion: These data support the suggestion that the beneficial properties of DAP on the CPZ-induced demyelination are mediated by targeting Nrf2 and NF-kB pathways.

8.
J Pharm Anal ; 11(1): 108-121, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33717617

ABSTRACT

Many studies have so far confirmed the efficiency of phytochemicals in the treatment of prostate cancer. Eupatorin, a flavonoid with a wide range of phytomedical activities, suppresses proliferation of and induces apoptosis of multiple cancer cell lines. However, low solubility, poor bioavailability, and rapid degradation limit its efficacy. The aim of our study was to evaluate whether the use of mPEG-b-poly (lactic-co-glycolic) acid (PLGA) coated iron oxide nanoparticles as a carrier could enhance the therapeutic efficacy of eupatorin in DU-145 and LNcaP human prostate cancer cell lines. Nanoparticles were prepared by the co-precipitation method and were fully characterized for morphology, surface charge, particle size, drug loading, encapsulation efficiency and in vitro drug-release profile. The inhibitory effect of nanoparticles on cell viability was evaluated by MTT test. Apoptosis was then determined by Hoechest staining, cell cycle analysis, NO production, annexin/propidium iodide (PI) assay, and Western blotting. The results indicated that eupatorin was successfully entrapped in Fe3O4@mPEG-b-PLGA nanoparticles with an efficacy of (90.99 ± 2.1)%. The nanoparticle's size was around (58.5 ± 4) nm with a negative surface charge [(-34.16 ± 1.3) mV]. In vitro release investigation showed a 30% initial burst release of eupatorin in 24 h, followed by sustained release over 200 h. The MTT assay indicated that eupatorin-loaded Fe3O4@mPEG-b-PLGA nanoparticles exhibited a significant decrease in the growth rate of DU-145 and LNcaP cells and their IC50 concentrations were 100 µM and 75 µM, respectively. Next, apoptosis was confirmed by nuclear condensation, enhancement of cell population in the sub-G1 phase and increased NO level. Annexin/PI analysis demonstrated that eupatorin-loaded Fe3O4@mPEG-b-PLGA nanoparticles could increase apoptosis and decrease necrosis frequency. Finally, Western blotting analysis confirmed these results and showed that Bax/Bcl-2 ratio and the cleaved caspase-3 level were up-regulated by the designing nanoparticles. Encapsulation of eupatorin in Fe3O4@mPEG-b-PLGA nanoparticles increased its anticancer effects in prostate cancer cell lines as compared to free eupatorin. Based on these results, this formulation can provide a sustained eupatorin-delivery system for cancer treatment with the drug remaining active at a significantly lower dose, making it a suitable candidate for pharmacological uses.

9.
Iran J Pharm Res ; 19(3): 391-401, 2020.
Article in English | MEDLINE | ID: mdl-33680039

ABSTRACT

Prostate cancer is enumerated as one of the most prevalent cancers in men, with a mortality rate of 18%. Chemotherapy is considered as a common strategy for cancer treatment; however, toxic side effects and drug resistance associated with chemotherapy are major drawbacks with this approach. It is well known that a diet rich in flavonoids can reduce the incidence of many types of cancer in a significant manner, and it was proved that methoxy flavones have greater bioavailability compared to the nonmethylated ones. Calycopterin is a tetramethoxy flavone which was demonstrated to have anti-proliferative effects on colon, gastric, and osteosarcoma cancer cells. Therefore, in the current study, we have evaluated the apoptotic effects of this flavonoid on two prostate cancer cell lines in-vitro. The MTT assay revealed that after 48 h treatment with this flavonoid, cell viability reduced to 50% compared to the control group. However, calycopterin treatment of healthy HUVEC did not cause any significant reduction in cell viability. Moreover, the clonogenic assay demonstrated that after 14 days, colony size and numbers reduced significantly in calycopterin treated cells. In addition, the percentage of the sub-G1 population in calycopterin-treated cells augmented significantly compared to untreated group. Also, calycopterin-treated cells demonstrated shiny condensed nuclei with fragmented DNA indicative of apoptosis. Finally, a significant reduction in the migration ability was observed in both lines subjected to calycopterin after 48 h. To conclude, our results demonstrated the apoptotic and anti-metastatic effects of calycopterin in both hormone-dependent and independent prostate cancer cell lines.

10.
Naunyn Schmiedebergs Arch Pharmacol ; 393(11): 2145-2156, 2020 11.
Article in English | MEDLINE | ID: mdl-32617603

ABSTRACT

Breast cancer is the most common cause of death related to cancer in women, and several studies proved that flavonoids could induce apoptosis in this cancer through different pathways. Calycopterin is a flavonoid which was shown to induce preferential antiproliferative effects on some cancers; however, no information is available on its effect on breast cancer. Therefore, in this paper, the apoptotic effect of calycopterin and its underlying mechanism in two different breast cancer cells, MDA-MB-231 and MCF7 cell lines were investigated. MTT assay showed that calycopterin reduced the proliferation of both cancer lines with no adverse effect on normal cells. The clonogenic assay showed that calycopterin treatments decreased the colony numbers and sizes, and wound healing assay demonstrated the inhibition of migration in both cancer cells. Cell cycle and annexin/PI analyses indicated that calycopterin augmented sub-G1 population and annexin/PI-positive cells. Gene expression revealed that Bax/Bcl2 increased in the MDA-MB-231 cell line, while no change was observed in that of the MCF7 line. Expression of gene caspase-8 was augmented in both lines, although increased expression of caspase-3 was found just in MDA-MB-231 cells. Our results validated the apoptotic effect of calycopterin on both breast cancer lines with more potency on triple-negative ones.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/metabolism , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Flavones/pharmacology , Receptors, Estrogen/metabolism , Triple Negative Breast Neoplasms/drug therapy , Apoptosis Regulatory Proteins/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
11.
Iran Biomed J ; 13(4): 229-36, 2009 10.
Article in English | MEDLINE | ID: mdl-19946349

ABSTRACT

BACKGROUND: Pectin is composed of complex polysaccharides that can inhibit cancer metastasis and proliferation with no evidence of toxicity. In the present study, the apoptotic and necrotic effects of pectic acid (PA) on the rat pituitary GH3/B6 tumor cells has been investigated. METHODS: GH3/B6 cells were cultured in the Ham's F12 medium enriched with 15% horse serum and 2.5% fetal bovine serum for 3 days. Then, they were treated by various amounts of PA in different periods (6, 24 and 48 hours). Bromocriptine was used as positive control and the cell viability was detected by MTT test. The nuclear morphology of cells was explored by florescent stains including acridine orange (AO)/ethidium bromide (EB). In addition, percentages of apoptotic and necrotic cells were studied with triphosphate nick-end labeling (TUNEL) assay, cell cycle analysis and propidium iodide (PI) staining. RESULTS: Long-term incubation with PA results in increased cell death and DNA damage as detected by MTT assay and AO/EB staining. TUNEL assay showed that PA (100 microg/ml to 1 mg/ml) could induce apoptosis in a dose-dependent manner, while higher concentrations of PA (2.5 and 5 mg/ml) induced necrosis which was confirmed by PI staining. Furthermore, cell cycle analysis indicated that PA induced sub G1 events, and DNA fragmentation was also correlated with the number of the apoptotic cells. CONCLUSION: It can be concluded that PA is responsible for apoptosis in the rat pituitary tumor cells. Therefore, one may suggest that this group of polysaccharides can be used in treatment of pituitary tumors.


Subject(s)
Apoptosis/drug effects , Pectins/pharmacology , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Membrane Permeability , Cell Survival/drug effects , DNA Fragmentation/drug effects , In Situ Nick-End Labeling , Microscopy, Fluorescence , Necrosis , Nucleosomes/pathology , Rats
12.
J Pain ; 20(8): 885-897, 2019 08.
Article in English | MEDLINE | ID: mdl-30707953

ABSTRACT

The present study investigated the role of the amygdala N-methyl-d-aspartate (NMDA) receptors/nitric oxide synthase pathway in morphine-induced anti-allodynia. Concurrently with the bilateral cannulation of the central amygdala, chronic constriction of the sciatic nerve was performed on male Wistar rats. Morphine (3-5 mg/kg) was administered intraperitoneally to induce anti-allodynia. When D-AP5, a selective NMDA receptor antagonist, (.05-.1 µg/rat) or NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME), the nitric oxide synthase inhibitor (.1-.5 µg/rat), were microinjected into the central amygdala, the higher doses potentiated an ineffective dose of morphine (3 mg/kg). Microinjection of the same doses of D-AP5 and L-NAME without morphine had no effect. Comicroinjection of the ineffective doses of L-NAME (.1 µg/rat) and D-AP5 (.05 µg/rat) with a 5-minute interval, enhanced the anti-allodynic effect of morphine (3 mg/kg). Western blot analysis was employed to evaluate the levels of cyclic adenosine monophosphate-response element-binding protein (CREB) and phosphorylated CREB (pCREB) in the amygdala tissues. Our results showed that neuropathic pain increased the pCREB/CREB ratio in the amygdala, and this ratio was decreased after morphine-induced anti-allodynia. The potentiative effect of the coadministration of D-AP5/L-NAME on an ineffective dose of morphine also decreased the amygdala pCREB/CREB levels. Therefore, it seems that the amygdala pCREB/CREB signaling pathway plays a critical role in processing neuropathic pain. Moreover, the glutamate NMDA receptors and nitric oxide system in the amygdala may be involved in morphine-induced anti-allodynia. PERSPECTIVE: Neuropathic pain is difficult to treat and the exact mechanisms remain unknown. This article suggests the importance of the amygdala glutamatergic and nitric oxide systems in morphine-induced anti-allodynia. These findings might be used in clinical studies to reach a better understanding of neuropathic pain mechanisms and treatment.


Subject(s)
Amygdala/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hyperalgesia/drug therapy , Morphine/therapeutic use , Neuralgia/drug therapy , Nitric Oxide Synthase/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Signal Transduction/drug effects , 2-Amino-5-phosphonovalerate/pharmacology , Amygdala/metabolism , Animals , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hyperalgesia/metabolism , Male , NG-Nitroarginine Methyl Ester/pharmacology , Neuralgia/metabolism , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/metabolism , Phosphorylation/drug effects , Rats , Rats, Wistar
13.
Bioimpacts ; 8(3): 185-194, 2018.
Article in English | MEDLINE | ID: mdl-30211078

ABSTRACT

Introduction: Gallic acid (GA) and curcumin (Cur) are natural phenolic compounds that their anti-tumor effects on many types of cancers have been proved. In the current study, the effect of the combination of these agents on MDA-MB-231 breast cancer cells was investigated. Methods: Inhibition of cell proliferation (MTT assay), light microscopy, fluorescence microscopy, cell cycle analysis, nitrite detection, ROS levels, measurement of the mitochondrial membrane potential, GSH level, Annexin V assay, RT-PCR and Western blotting methods were applied. Results: The results revealed the combination of GA and Cur strongly decreased MDA-MB-231 cell growth. Moreover, this combination increased ROS level and cytotoxic activity along with the glutathione depletion in MDA-MB-231 cells. Flow cytometry analysis showed the combination of GA and Cur increased sub-G1 cell population. Furthermore, fluorescent staining and Annexin V/PI assay showed that apoptotic cells were significantly increased in the presence of GA and Cur. At last, protein expression evaluation showed that the combination of GA and Cur significantly decreased Bcl-2 level while increased Bax, cleaved-caspase3 and PARP levels in MDA-MB-231 cells. Conclusion: These results suggest that GA in combination with Cur could be a possible candidate for chemoprevention agent of triple negative breast cancer.

14.
Asian Pac J Cancer Prev ; 19(1): 131-139, 2018 Jan 27.
Article in English | MEDLINE | ID: mdl-29373904

ABSTRACT

Background: Cancer persists as one of the world's most pressing maladies. Notable points about chemotherapy are drug side effects which are almost universally encountered. Emerging knowledge focusing on mechanisms of toxicity due to chemotherapy has led to characterization of novel methods, including the exploitation of natural compounds, in combination therapies. Flavonoids are natural polyphenolic compounds that play protective roles against tumor cell development. The focus of this study was apoptotic effects of two flavonoids, eupatorin and salvigenin, in combination with doxorubicin on a cellular model of colon cancer. Method: Upon establishing a non-effective dose of doxorubicin, and effective doses of eupatorin (100µM) and salvigenin (150µM) via MTT, morphological features of apoptosis were distinguished using DAPI staining and cell cycle blockage in the sub-G1 phase. Apoptosis was determined by annexin/ PI and western blotting. ROS levels and MMP were measured to show any role of mitochondria in apoptosis. Results: Co-administration of flavonoids with doxorubicin induced apoptosis via the mitochondrial pathway as mitochondrial membrane potential and ROS production were changed. Annexin/PI analysis demonstrated that apoptosis frequency was increased with the combination treatments in colon cancer cells. Finally, the combination of these flavonoids with doxorubicin increased the Bax/Bcl-2 ratio, caspase-3 expression and PARP cleavage. Conclusion: Combination of flavonoids with doxorubicin induces apoptosis and enhances effect on cancer cells which might allow amelioration of side effects by dose lowering.

15.
Eur J Pharmacol ; 562(1-2): 92-102, 2007 May 07.
Article in English | MEDLINE | ID: mdl-17336285

ABSTRACT

In the present study, the effects of intra-ventral tegmental area injections of cholinergic agents on morphine-induced conditioned place preference were investigated by using an unbiased 3-day schedule of place conditioning design in rats. The conditioning treatments with subcutaneous injections of morphine (0.5-7.5 mg/kg) induced a significant dose-dependent conditioned place preference for the drug-associated place. Intra-ventral tegmental area injection of an anticholinesterase, physostigmine (2.5 and 5 microg/rat) or nicotinic acetylcholine receptor agonist, nicotine (0.5 and 1 microg/rat) with an ineffective dose of morphine (0.5 mg/kg) elicited a significant conditioned place preference. Furthermore, intra-ventral tegmental area administration of muscarinic acetylcholine receptor antagonist, atropine (1-4 microg/rat) or nicotinic acetylcholine receptor antagonist, mecamylamine (5 and 7.5 microg/rat) dose-dependently inhibited the morphine (5 mg/kg)-induced place preference. Atropine or mecamylamine reversed the effect of physostigmine or nicotine on morphine response respectively. The injection of physostigmine, but not atropine, nicotine or mecamylamine, into the ventral tegmental area alone produced a significant place aversion. Moreover, intra-ventral tegmental area administration of the higher doses of physostigmine or atropine, but not nicotine or mecamylamine decreased the locomotor activity. We conclude that muscarinic and nicotinic acetylcholine receptors in the ventral tegmental area may critically mediate the rewarding effects of morphine.


Subject(s)
Conditioning, Operant/drug effects , Morphine/pharmacology , Receptors, Cholinergic/physiology , Ventral Tegmental Area/drug effects , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Analysis of Variance , Animals , Atropine/administration & dosage , Atropine/pharmacology , Behavior, Animal/drug effects , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Injections, Subcutaneous , Male , Mecamylamine/administration & dosage , Mecamylamine/pharmacology , Morphine/administration & dosage , Motor Activity/drug effects , Muscarinic Antagonists/administration & dosage , Muscarinic Antagonists/pharmacology , Nicotine/administration & dosage , Nicotine/pharmacology , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/administration & dosage , Nicotinic Antagonists/pharmacology , Physostigmine/administration & dosage , Physostigmine/pharmacology , Rats , Rats, Wistar , Ventral Tegmental Area/physiology
16.
Biomed Pharmacother ; 84: 637-644, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27697635

ABSTRACT

PURPOSE: Increase in the number of cancer related deaths has made the study on developing new drugs and treatments essential. One of the main aims in developing new therapies is to use natural resources which have the ability to induce apoptosis. Pectin is one of these natural compounds, a complex polysaccharide found in apples with anti-cancer properties. The aim of this study was to examine anti-cancer properties of pectic acid both in vitro in 4T1 breast cancer cells and in vivo using an animal model of breast cancer. EXPERIMENTAL DESIGN: MTT cell proliferation assays, double fluorescence staining (acridine orange/ethidium bromide) and cell cycle analysis were employed to measure apoptosis in vitro. 4T1 cells were implanted into female BALB/c mice for in vivo studies. Then tumor volumes, histological analysis and immunohistochemical staining of P53 and tunnel test were applied to evaluate apoptosis in tumors. RESULTS: The results of in vitro studies showed that concentration of 0.1% of pectic acid could induce apoptosis, inhibit cell growth (p<0.001) and reduce cell attachment, fragmented chromatin, and membrane blebbing as well as blocking the sub-G1 phase (p<0.001). In addition, in vivo studies showed that pectic acid could inhibit the progression of tumors through over-expression of P53 and increasing the number of apoptotic cells. CONCLUSION: Our results demonstrated that pectic acid, a natural component of apple, can prevent metastasis in both cancer cell lines and primary tumors. This potential effect is mainly due to its ability to induce apoptosis.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Malus , Pectins/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatin Assembly and Disassembly/drug effects , Dose-Response Relationship, Drug , Female , Fruit , Malus/chemistry , Mice, Inbred BALB C , Pectins/isolation & purification , Phytotherapy , Plants, Medicinal , Time Factors , Tumor Burden/drug effects , Up-Regulation
17.
Iran J Public Health ; 45(8): 1054-1063, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27928532

ABSTRACT

BACKGROUND: Collagen-based three-dimensional (3D) in vitro systems have been introduced to study the physiological states of cells. As a biomolecule, collagen is usually extracted from terrestrial animals whilst aquatic animals like squid contain large amounts of collagen. METHODS: In order to make effective use of marine organisms, we selected Persian Gulf squid in 2015 to extract the required collagen. Then, a 3D culture system based on the extracted collagen was applied to investigate cellular mechanisms in a native microenvironment. The formed collagen gel was used to investigate the growth of MDA-MB-231 breast cancer cells as well as responses to pectic acid. RESULTS: The results revealed that the extracted collagen contained α, ß and γ components with high water holding capacity. This collagen formed a gel-like structure, which could promote the proliferation of MDA-MB-231 breast cancer cells. The MDA-MB-231 cells' viability in presence of pectic acid, demonstrating the cells' behavior in a 3D culture system. CONCLUSION: It seems that the collagen extracted from squid skin has type I collagen properties. It might be used as a substrate in 3D cell culture systems.

18.
Article in Zh | WPRIM | ID: wpr-883504

ABSTRACT

Many studies have so far confirmed the efficiency of phytochemicals in the treatment of prostate cancer.Eupatorin,a flavonoid with a wide range of phytomedical activities,suppresses proliferation of and in-duces apoptosis of multiple cancer cell lines.However,low solubility,poor bioavailability,and rapid degradation limit its efficacy.The aim of our study was to evaluate whether the use of mPEG-b-poly(lactic-co-glycolic)acid(PLGA)coated iron oxide nanoparticles as a carrier could enhance the therapeutic efficacy of eupatorin in DU-145 and LNcaP human prostate cancer cell lines.Nanoparticles were prepared by the co-precipitation method and were fully characterized for morphology,surface charge,particle size,drug loading,encapsulation efficiency and in vitro drug-release profile.The inhibitory effect of nanoparticles on cell viability was evaluated by MTT test.Apoptosis was then determined by Hoechest staining,cell cycle analysis,NO production,annexin/propidium iodide(PI)assay,and Western blotting.The results indicated that eupatorin was successfully entrapped in Fe3O4@mPEG-b-PLGA nanoparticles with an efficacy of(90.99 ± 2.1)%.The nanoparticle's size was around(58.5 ± 4)nm with a negative surface charge[(-34.16 ± 1.3)mV].In vitro release investigation showed a 30%initial burst release of eupatorin in 24 h,followed by sustained release over 200 h.The MTT assay indicated that eupatorin-loaded Fe3O4@mPEG-b-PLGA nanoparticles exhibited a significant decrease in the growth rate of DU-145 and LNcaP cells and their IC50 concentrations were 100 μM and 75 μM,respectively.Next,apoptosis was confirmed by nuclear condensation,enhancement of cell population in the sub-G1 phase and increased NO level.Annexin/PI analysis demonstrated that eupatorin-loaded Fe3O4@mPEG-b-PLGA nanoparticles could increase apoptosis and decrease necrosis frequency.Finally,Western blotting analysis confirmed these results and showed that Bax/Bcl-2 ratio and the cleaved caspase-3 level were up-regulated by the designing nanoparticles.Encapsulation of eupatorin in Fe3O4@mPEG-b-PLGA nanoparticles increased its anticancer effects in prostate cancer cell lines as compared to free eupatorin.Based on these results,this formulation can provide a sustained eupatorin-delivery system for cancer treatment with the drug remaining active at a significantly lower dose,making it a suitable candidate for pharmacological uses.

19.
Behav Brain Res ; 292: 109-15, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26055203

ABSTRACT

The present study investigated the possible alterations of hippocampal CREB phosphorylation in drug state-dependent memory retrieval. One-trial step-down passive avoidance task was used to assess memory retrieval in adult male NMRI mice. Pre-training administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol (1g/kg, i.p) or nicotine (0.7 mg/kg, s.c.) reversed ethanol-induced amnesia, indicating ethanol- or ethanol-nicotine induced state-dependent learning (STD). Using Western blot analysis, it was found that the p-CREB/CREB ratio in the hippocampus increased in the mice that showed successful memory retrieval as compared with untrained mice. In contrast, pre-training administration of ethanol (1g/kg, i.p.) decreased the hippocampal p-CREB/CREB ratio in comparison with the control group. The hippocampal p-CREB/CREB ratio enhanced in ethanol- and ethanol-nicotine induced STD. Moreover, memory impairment induced by pre-training administration of WIN (1 mg/kg, i.p.) improved in the animals that received pre-test administration of WIN (1 mg/kg, i.p.), ethanol (0.5 g/kg, i.p.) or nicotine (0.7 mg/kg, s.c.), suggesting a cross STD between the drugs. The p-CREB/CREB ratio in the hippocampus decreased in the of WIN-induced amnesia and STD groups in comparison with the control group. In addition, cross state-dependent learning between WIN and ethanol or nicotine was associated with the increase of the hippocampal p-CREB/CREB ratio. It can be concluded that phosphorylation of CREB in the hippocampus is a critical event underlying the interaction of co-administration of drugs on memory retrieval in passive avoidance learning.


Subject(s)
Avoidance Learning/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Memory/drug effects , Amnesia/chemically induced , Amnesia/metabolism , Animals , Avoidance Learning/physiology , Benzoxazines/pharmacology , Conditioning, Operant/drug effects , Ethanol/pharmacology , Male , Memory Disorders/chemically induced , Memory Disorders/metabolism , Mice , Mice, Inbred Strains , Morpholines/pharmacology , Naphthalenes/pharmacology , Nicotine/pharmacology , Phosphorylation/drug effects
20.
Asian Pac J Cancer Prev ; 16(13): 5265-71, 2015.
Article in English | MEDLINE | ID: mdl-26225664

ABSTRACT

BACKGROUND: The effects of plant products on cancer cells has become a field of major importance. Many substancesmay induce apoptosis in anti-cancer treatment. Pectins, a family of complex polysaccharides, and their degradation products may for exasmple exert apoptotic effects in cancer cells. Apples and citrus fruits are the main sources of pectin which can be applied for anti-cancer research. The present study concerned an intact form of pectic-oligoshaccharide named pectic acid (poly galactronic acid). MATERIALS AND METHODS: Inhibition of cell proliferation assays (MTT), light microscopy, fluorescence microscopy (acridin orange/ethidium bromide), DNA fragmentation tests, cell cycle analysis, annexin PI and Western blotting methods were applied to evaluate apoptosis. RESULTS: The results indicated that pectic acid inhibited cell growth and reduced cell attachment after 24h incubation. This did not appear to be due to necrosis, since morphological features of apoptosis were detected with AO/EB staining and cell cycling was blocked in the sub-G1 phase. Annexin/PI and DNA fragmentation findings indicated that apoptosis frequency increased after 24h incubation with pectic acid. In addition, the data showed pectic acid induced caspase-dependent apoptosis. CONCLUSIONS: These data indicate that apple pectic acid without any modification could trigger apoptosis in MDA-MB-231 human breast cancer cells and has potential to improve cancer treatment as a natural product.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Malus/chemistry , Pectins/pharmacology , Blotting, Western , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Female , Flow Cytometry , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL