Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 119(38): e2206805119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095177

ABSTRACT

Habitat anthropization is a major driver of global biodiversity decline. Although most species are negatively affected, some benefit from anthropogenic habitat modifications by showing intriguing life-history responses. For instance, increased recruitment through higher allocation to reproduction or improved performance during early-life stages could compensate for reduced adult survival, corresponding to "compensatory recruitment". To date, evidence of compensatory recruitment in response to habitat modification is restricted to plants, limiting understanding of its importance as a response to global change. We used the yellow-bellied toad (Bombina variegata), an amphibian occupying a broad range of natural and anthropogenic habitats, as a model species to test for and to quantify compensatory recruitment. Using an exceptional capture-recapture dataset composed of 21,714 individuals from 67 populations across Europe, we showed that adult survival was lower, lifespan was shorter, and actuarial senescence was higher in anthropogenic habitats, especially those affected by intense human activities. Increased recruitment in anthropogenic habitats fully offset reductions in adult survival, with the consequence that population growth rate in both habitat types was similar. Our findings indicate that compensatory recruitment allows toad populations to remain viable in human-dominated habitats and might facilitate the persistence of other animal populations in such environments.


Subject(s)
Anthropogenic Effects , Anura , Biodiversity , Animals , Europe , Population Dynamics
2.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Article in English | MEDLINE | ID: mdl-29851235

ABSTRACT

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Subject(s)
Ants/physiology , Biodiversity , Animals , Climate , Ecosystem
3.
Ecology ; 98(3): 883-884, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27984661

ABSTRACT

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Subject(s)
Ants/physiology , Databases, Factual , Ecology , Animals , Ants/classification , Ecosystem
4.
Proc Biol Sci ; 282(1808): 20150418, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25994675

ABSTRACT

Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.


Subject(s)
Ants/physiology , Biodiversity , Climate , Animals , Climate Change , Temperature
5.
J Insect Sci ; 14: 108, 2014.
Article in English | MEDLINE | ID: mdl-25199767

ABSTRACT

Ants of the genus Tatuidris Brown and Kempf (Formicidae: Agroecomyrmecinae) generally occur at low abundances in forests of Central and South America. Their morphological peculiarities, such as mandibular brushes, are presumably linked with specialized predatory habits. Our aims were to (1) assess the Tatuidris abundance in an evergreen premontane forest of Ecuador; (2) detail morphological characteristics and feeding behavior of Tatuidris; and (3) define the position of Tatuidris in the food web. A total of 465 litter samples were collected. For the first time, live Tatuidris individuals were observed. Various potential food sources were offered to them. A nitrogen stable isotope ratio analysis ((15)N/(14)N) was conducted on Tatuidris tatusia, other ants, and common organisms from the leaf-litter mesofauna. We found a relatively high abundance of T. tatusia in the site. Live individuals did not feed on any of the food sources offered, as usually observed with diet specialist ants. The isotope analysis revealed that T. tatusia is one of the top predators of the leaf-litter food web.


Subject(s)
Ants/anatomy & histology , Ants/physiology , Food Chain , Animals , Carnivory , Ecology , Ecuador , Nitrogen Isotopes/analysis , Population Density
6.
J Insect Sci ; 12: 57, 2012.
Article in English | MEDLINE | ID: mdl-22962850

ABSTRACT

The Winkler extraction is one of the two fundamental sampling techniques of the standardized "Ants of the Leaf Litter" protocol, which aims to allow qualitative and quantitative comparisons of ant (Hymenoptera: Formicidae) assemblages. To achieve this objective, it is essential that the standard 48-hour extraction provides a reliable picture of the assemblages under study. Here, we tested to what extent the efficiency of the ant extraction is affected by the initial moisture content of the leaf litter sample. In an Ecuadorian mountain rainforest, the leaf litter present under rainfall-excluded and rainfall-allowed plots was collected, its moisture content measured, and its ant fauna extracted with a mini-Winkler apparatus for a 48-hour and a 96-hour period. The efficiency of the Winkler method to extract ant individuals over a 48-hour period decreased with the moisture content of the leaf litter sample. However, doubling the extraction time did not improve the estimations of the ant species richness, composition, and relative abundance. Although the moisture content of the leaf litter slightly affected the ant sampling, our results indicated that a 48-hour Winkler extraction, as recommended by the "Ants of the Leaf Litter" protocol, is sufficient to allow reliable comparisons of ant assemblages.


Subject(s)
Ants , Ecology/methods , Animals , Biodiversity , Population Density , Rain
7.
Zootaxa ; 4438(1): 137-147, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-30313160

ABSTRACT

We report finding Strumigenys thaxteri Wheeler in the Amazonian foothills of southeastern Ecuador, over 2000 km to the west of previously known records for the species in Trinidad and Guyana. Field observations suggest it is a sit and wait ambush predator that captures insects that alight on the vegetation upon which they position themselves. Once prey is subdued they descend with it to ground level, where they presumably nest. Their massive mandibles, robust claws, dense body cover of long silky hairs, and sting may all contribute to detecting, trapping, and subduing larger sized, flying prey. This type of predation is hitherto unreported for the genus. Strumigenys reticeps (Kempf), an apparently closely related species from southern Brazil, may share the same behavior but its key morphological traits are of a lesser degree of development than in S. thaxteri. Both species are redescribed and their morphological variability is discussed. High resolution images of both species are provided. The more frequent use of vegetation beating for ant-collecting is urged. Strumigenys lojanensis Lattke Aguirre is synonymized as a junior synonym of S. onorei Baroni Urbani De Andrade.


Subject(s)
Ants , Animals , Brazil , Ecuador , Guyana , Trinidad and Tobago
8.
Zootaxa ; 4137(1): 121-8, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27395746

ABSTRACT

Recently a new species of bombyliid fly, Marleyimyia xylocopae, was described by Marshall & Evenhuis (2015) based on two photographs taken during fieldwork in the Republic of South Africa. This species has no preserved holotype. The paper generated some buzz, especially among dipterists, because in most cases photographs taken in the field provide insufficient information for properly diagnosing and documenting species of Diptera.


Subject(s)
Diptera/classification , Entomology/standards , Animals , Classification/methods , Diptera/anatomy & histology , Female , Male , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL