Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 157(2): 369-381, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24703711

ABSTRACT

Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.


Subject(s)
Chromosomes, Human, Pair 3 , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , Cell Line, Tumor , Chromosome Inversion , Humans , MDS1 and EVI1 Complex Locus Protein , Promoter Regions, Genetic , Transcriptional Activation , Translocation, Genetic
2.
Blood ; 141(5): 453-466, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36095844

ABSTRACT

Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.


Subject(s)
DNA-Binding Proteins , Leukemia, Myeloid, Acute , Humans , Animals , Mice , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , MDS1 and EVI1 Complex Locus Protein/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Carcinogenesis/genetics , Transcriptional Regulator ERG/genetics
3.
Blood ; 140(8): 875-888, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35709354

ABSTRACT

Detailed genomic and epigenomic analyses of MECOM (the MDS1 and EVI1 complex locus) have revealed that inversion or translocation of chromosome 3 drives inv(3)/t(3;3) myeloid leukemias via structural rearrangement of an enhancer that upregulates transcription of EVI1. Here, we identify a novel, previously unannotated oncogenic RNA-splicing derived isoform of EVI1 that is frequently present in inv(3)/t(3;3) acute myeloid leukemia (AML) and directly contributes to leukemic transformation. This EVI1 isoform is generated by oncogenic mutations in the core RNA splicing factor SF3B1, which is mutated in >30% of inv(3)/t(3;3) myeloid neoplasm patients and thereby represents the single most commonly cooccurring genomic alteration in inv(3)/t(3;3) patients. SF3B1 mutations are statistically uniquely enriched in inv(3)/t(3;3) myeloid neoplasm patients and patient-derived cell lines compared with other forms of AML and promote mis-splicing of EVI1 generating an in-frame insertion of 6 amino acids at the 3' end of the second zinc finger domain of EVI1. Expression of this EVI1 splice variant enhanced the self-renewal of hematopoietic stem cells, and introduction of mutant SF3B1 in mice bearing the humanized inv(3)(q21q26) allele resulted in generation of this novel EVI1 isoform in mice and hastened leukemogenesis in vivo. The mutant SF3B1 spliceosome depends upon an exonic splicing enhancer within EVI1 exon 13 to promote usage of a cryptic branch point and aberrant 3' splice site within intron 12 resulting in the generation of this isoform. These data provide a mechanistic basis for the frequent cooccurrence of SF3B1 mutations as well as new insights into the pathogenesis of myeloid leukemias harboring inv(3)/t(3;3).


Subject(s)
Leukemia, Myeloid, Acute , Proto-Oncogenes , Animals , Chromosome Inversion , Chromosomes, Human, Pair 3/metabolism , DNA-Binding Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein/genetics , Mice , Proto-Oncogenes/genetics , Transcription Factors/metabolism
4.
Blood ; 138(2): 160-177, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33831168

ABSTRACT

Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.


Subject(s)
Alleles , CCAAT-Enhancer-Binding Proteins/genetics , Epigenesis, Genetic , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA Methylation/genetics , Enhancer Elements, Genetic/genetics , Female , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Remission Induction , Young Adult
5.
Blood ; 137(6): 812-825, 2021 02 11.
Article in English | MEDLINE | ID: mdl-32911532

ABSTRACT

B-cell lymphoma 6 (BCL6) is a transcription repressor and proto-oncogene that plays a crucial role in the innate and adaptive immune system and lymphoid neoplasms. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML). BCL6 was expressed at variable and often high levels in AML cell lines and primary AML samples. AMLs with higher levels of BCL6 were generally sensitive to treatment with BCL6 inhibitors, with the exception of those with monocytic differentiation. Gene expression profiling of AML cells treated with a BCL6 inhibitor revealed induction of BCL6-repressed target genes and transcriptional programs linked to DNA damage checkpoints and downregulation of stem cell genes. Ex vivo treatment of primary AML cells with BCL6 inhibitors induced apoptosis and decreased colony-forming capacity, which correlated with the levels of BCL6 expression. Importantly, inhibition or knockdown of BCL6 in primary AML cells resulted in a significant reduction of leukemia-initiating capacity in mice, suggesting ablation of leukemia repopulating cell functionality. In contrast, BCL6 knockout or inhibition did not suppress the function of normal hematopoietic stem cells. Treatment with cytarabine further induced BCL6 expression, and the levels of BCL6 induction were correlated with resistance to cytarabine. Treatment of AML patient-derived xenografts with BCL6 inhibitor plus cytarabine suggested enhanced antileukemia activity with this combination. Hence, pharmacologic inhibition of BCL6 might provide a novel therapeutic strategy for ablation of leukemia-repopulating cells and increased responsiveness to chemotherapy.


Subject(s)
Leukemia, Myeloid, Acute/pathology , Neoplasm Proteins/physiology , Proto-Oncogene Proteins c-bcl-6/physiology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Self Renewal , Cytarabine/therapeutic use , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Humans , Indoles/pharmacology , Indoles/therapeutic use , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/cytology , Proto-Oncogene Mas , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , RNA Interference , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA-Seq , Radiation Chimera , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
6.
Haematologica ; 108(9): 2316-2330, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36475518

ABSTRACT

Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.


Subject(s)
GATA2 Deficiency , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Child , Humans , Mice , Animals , GATA2 Deficiency/genetics , Myelodysplastic Syndromes/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/pathology , Hematopoietic Stem Cells/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism
7.
Blood ; 136(2): 224-234, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32219447

ABSTRACT

Acute myeloid leukemia (AML) with inv(3)/t(3;3)(q21q26) is a distinct World Health Organization recognized entity, characterized by its aggressive course and poor prognosis. In this subtype of AML, the translocation of a GATA2 enhancer (3q21) to MECOM (3q26) results in overexpression of the MECOM isoform EVI1 and monoallelic expression of GATA2 from the unaffected allele. The full-length MECOM transcript, MDS1-EVI1, is not expressed as the result of the 3q26 rearrangement. Besides the classical inv(3)/t(3;3), a number of other 3q26/MECOM rearrangements with poor treatment response have been reported in AML. Here, we demonstrate, in a group of 33 AML patients with atypical 3q26 rearrangements, MECOM involvement with EVI1 overexpression but no or low MDS1-EVI1 levels. Moreover, the 3q26 translocations in these AML patients often involve superenhancers of genes active in myeloid development (eg, CD164, PROM1, CDK6, or MYC). In >50% of these cases, allele-specific GATA2 expression was observed, either by copy-number loss or by an unexplained allelic imbalance. Altogether, atypical 3q26 recapitulate the main leukemic mechanism of inv(3)/t(3;3) AML, namely EVI1 overexpression driven by enhancer hijacking, absent MDS1-EVI1 expression and potential GATA2 involvement. Therefore, we conclude that both atypical 3q26/MECOM and inv(3)/t(3;3) can be classified as a single entity of 3q26-rearranged AMLs. Routine analyses determining MECOM rearrangements and EVI1 and MDS1-EVI1 expression are required to recognize 3q-rearranged AML cases.


Subject(s)
Chromosome Inversion , Chromosomes, Human, Pair 3/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , MDS1 and EVI1 Complex Locus Protein , Translocation, Genetic , Enhancer Elements, Genetic , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein/biosynthesis , MDS1 and EVI1 Complex Locus Protein/genetics , Male
8.
EMBO J ; 35(22): 2399-2416, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27572462

ABSTRACT

Unfavorable patient survival coincides with lineage plasticity observed in human acute leukemias. These cases are assumed to arise from hematopoietic stem cells, which have stable multipotent differentiation potential. However, here we report that plasticity in leukemia can result from instable lineage identity states inherited from differentiating progenitor cells. Using mice with enhanced c-Myc expression, we show, at the single-cell level, that T-lymphoid progenitors retain broad malignant lineage potential with a high capacity to differentiate into myeloid leukemia. These T-cell-derived myeloid blasts retain expression of a defined set of T-cell transcription factors, creating a lymphoid epigenetic memory that confers growth and propagates myeloid/T-lymphoid plasticity. Based on these characteristics, we identified a correlating human leukemia cohort and revealed targeting of Jak2/Stat3 signaling as a therapeutic possibility. Collectively, our study suggests the thymus as a source for myeloid leukemia and proposes leukemic plasticity as a driving mechanism. Moreover, our results reveal a pathway-directed therapy option against thymus-derived myeloid leukemogenesis and propose a model in which dynamic progenitor differentiation states shape unique neoplastic identities and therapy responses.


Subject(s)
Cell Transdifferentiation , Leukemia, Myeloid/pathology , Lymphoid Progenitor Cells/physiology , T-Lymphocytes/physiology , Animals , Humans , Mice
9.
Blood ; 132(25): 2643-2655, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30315124

ABSTRACT

Epigenetic control of gene expression occurs within discrete spatial chromosomal units called topologically associating domains (TADs), but the exact spatial requirements of most genes are unknown; this is of particular interest for genes involved in cancer. We therefore applied high-resolution chromosomal conformation capture sequencing to map the three-dimensional (3D) organization of the human locus encoding the key myeloid transcription factor PU.1 in healthy monocytes and acute myeloid leukemia (AML) cells. We identified a dynamic ∼75-kb unit (SubTAD) as the genomic region in which spatial interactions between PU.1 gene regulatory elements occur during myeloid differentiation and are interrupted in AML. Within this SubTAD, proper initiation of the spatial chromosomal interactions requires PU.1 autoregulation and recruitment of the chromatin-adaptor protein LDB1 (LIM domain-binding protein 1). However, once these spatial interactions have occurred, LDB1 stabilizes them independently of PU.1 autoregulation. Thus, our data support that PU.1 autoregulates its expression in a "hit-and-run" manner by initiating stable chromosomal loops that result in a transcriptionally active chromatin architecture.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , Neoplasm Proteins , Proto-Oncogene Proteins , Trans-Activators , Transcription, Genetic , Chromatin/genetics , Chromatin/metabolism , Genetic Loci , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
10.
Blood ; 129(15): 2083-2091, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28179278

ABSTRACT

One of the most studied transcription factors in hematopoiesis is the leucine zipper CCAAT-enhancer binding protein α (C/EBPα), which is mainly involved in cell fate decisions for myeloid differentiation. Its involvement in acute myeloid leukemia (AML) is diverse, with patients frequently exhibiting mutations, deregulation of gene expression, or alterations in the function of C/EBPα. In this review, we emphasize the importance of C/EBPα for neutrophil maturation, its role in myeloid priming of hematopoietic stem and progenitor cells, and its indispensable requirement for AML development. We discuss that mutations in the open reading frame of CEBPA lead to an altered C/EBPα function, affecting the expression of downstream genes and consequently deregulating myelopoiesis. The emerging transcriptional mechanisms of CEBPA are discussed based on recent studies. Novel insights on how these mechanisms may be deregulated by oncoproteins or mutations/variants in CEBPA enhancers are suggested in principal to reveal novel mechanisms of how CEBPA is deregulated at the transcriptional level.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Cell Transformation, Neoplastic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , Mutation , Myelopoiesis , Neoplasm Proteins , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Open Reading Frames
11.
Blood ; 127(1): 42-52, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26660432

ABSTRACT

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is a heterogeneous malignancy characterized by distinct genetic abnormalities. Recent discoveries have highlighted an additional important role of dysregulated epigenetic mechanisms in the pathogenesis of the disease. In contrast to genetic changes, epigenetic modifications are frequently reversible, which provides opportunities for targeted treatment using specific inhibitors. In this review, we will provide an overview of the current state of epigenetics and epigenetic therapy in AML and will describe perspectives on how to identify promising new approaches for epigenetic targeted treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Adult , Epigenesis, Genetic/genetics , Humans , Prognosis
12.
Blood ; 127(24): 2991-3003, 2016 06 16.
Article in English | MEDLINE | ID: mdl-26966090

ABSTRACT

Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Enhancer Elements, Genetic , Myeloid Cells/physiology , Myelopoiesis/genetics , Neutrophils/physiology , Animals , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Line, Tumor , Gene Expression Regulation, Developmental , HEK293 Cells , HL-60 Cells , HeLa Cells , Hep G2 Cells , Humans , Jurkat Cells , K562 Cells , Mice , Mice, Knockout , U937 Cells
13.
Dev Biol ; 411(2): 277-286, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26851695

ABSTRACT

We identify a mutation (D262N) in the erythroid-affiliated transcriptional repressor GFI1B, in an acute myeloid leukemia (AML) patient with antecedent myelodysplastic syndrome (MDS). The GFI1B-D262N mutant functionally antagonizes the transcriptional activity of wild-type GFI1B. GFI1B-D262N promoted myelomonocytic versus erythroid output from primary human hematopoietic precursors and enhanced cell survival of both normal and MDS derived precursors. Re-analysis of AML transcriptome data identifies a distinct group of patients in whom expression of wild-type GFI1B and SPI1 (PU.1) have an inverse pattern. In delineating this GFI1B-SPI1 relationship we show that (i) SPI1 is a direct target of GFI1B, (ii) expression of GFI1B-D262N produces elevated expression of SPI1, and (iii) SPI1-knockdown restores balanced lineage output from GFI1B-D262N-expressing precursors. These results table the SPI1-GFI1B transcriptional network as an important regulatory axis in AML as well as in the development of erythroid versus myelomonocytic cell fate.


Subject(s)
Gene Regulatory Networks , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Trans-Activators/genetics , Amino Acid Sequence , Animals , Antigens, CD34/metabolism , Base Sequence , Cell Differentiation , Cell Lineage , Cell Survival , Fetal Blood/cytology , Flow Cytometry , Gene Expression Regulation, Leukemic , Granulocyte Colony-Stimulating Factor/metabolism , Hematopoietic Stem Cells/cytology , Humans , Leukemia, Myeloid, Acute/metabolism , Mice , Molecular Sequence Data , Myelodysplastic Syndromes/metabolism , Point Mutation , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Stem Cells/cytology , Trans-Activators/metabolism , Zinc Fingers
14.
Blood ; 125(1): 133-9, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25381062

ABSTRACT

Myeloid malignancies bearing chromosomal inv(3)/t(3;3) abnormalities are among the most therapy-resistant leukemias. Deregulated expression of EVI1 is the molecular hallmark of this disease; however, the genome-wide spectrum of cooperating mutations in this disease subset has not been systematically elucidated. Here, we show that 98% of inv(3)/t(3;3) myeloid malignancies harbor mutations in genes activating RAS/receptor tyrosine kinase (RTK) signaling pathways. In addition, hemizygous mutations in GATA2, as well as heterozygous alterations in RUNX1, SF3B1, and genes encoding epigenetic modifiers, frequently co-occur with the inv(3)/t(3;3) aberration. Notably, neither mutational patterns nor gene expression profiles differ across inv(3)/t(3;3) acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome cases, suggesting recognition of inv(3)/t(3;3) myeloid malignancies as a single disease entity irrespective of blast count. The high incidence of activating RAS/RTK signaling mutations may provide a target for a rational treatment strategy in this high-risk patient group.


Subject(s)
Chromosome Inversion , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Translocation, Genetic , ras Proteins/metabolism , Alleles , Chromosome Banding , Chromosomes, Human, Pair 3 , DNA Mutational Analysis , Epigenesis, Genetic , Exome , Gene Expression Profiling , Humans , Sequence Analysis, DNA , Sequence Analysis, RNA
15.
Blood ; 125(19): 2985-94, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25805812

ABSTRACT

The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and co-downregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.


Subject(s)
Carrier Proteins/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Wnt Proteins/antagonists & inhibitors , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cell Cycle , Cohort Studies , DNA Methylation , DNA-Binding Proteins , Down-Regulation , Female , Follow-Up Studies , Gene Expression Profiling , Humans , Immunoenzyme Techniques , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prognosis , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Survival Rate , Transcription Factors , Tumor Cells, Cultured , Young Adult
16.
Nat Chem Biol ; 11(8): 571-578, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26167872

ABSTRACT

The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short (30-kDa) CCAAT-enhancer binding protein-α (C/EBPα) translational isoform, termed p30, represents the most common type of CEBPA mutation in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL (SET-domain/mixed-lineage leukemia) histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as downregulation of the latter inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a new small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30 cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Dihydropyridines/pharmacology , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Amino Acid Sequence , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Docking Simulation , Molecular Sequence Data , Molecular Targeted Therapy , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Signal Transduction , Tumor Cells, Cultured
17.
Nature ; 478(7370): 529-33, 2011 Oct 02.
Article in English | MEDLINE | ID: mdl-21964340

ABSTRACT

Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC and the polymerase-associated factor complex (PAFc), are associated with the BET family of acetyl-lysine recognizing, chromatin 'adaptor' proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL-AF9 and human MLL-AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.


Subject(s)
Chromatin/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Chromatin/genetics , Chromatin Immunoprecipitation , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding/drug effects , Proteomics , Transcription, Genetic/drug effects
18.
Blood ; 124(15): 2391-9, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25185713

ABSTRACT

Runx transcription factors contribute to hematopoiesis and are frequently implicated in hematologic malignancies. All three Runx isoforms are expressed at the earliest stages of hematopoiesis; however, their function in hematopoietic stem cells (HSCs) is not fully elucidated. Here, we show that Runx factors are essential in HSCs by driving the expression of the hematopoietic transcription factor PU.1. Mechanistically, by using a knockin mouse model in which all three Runx binding sites in the -14kb enhancer of PU.1 are disrupted, we observed failure to form chromosomal interactions between the PU.1 enhancer and its proximal promoter. Consequently, decreased PU.1 levels resulted in diminished long-term HSC function through HSC exhaustion, which could be rescued by reintroducing a PU.1 transgene. Similarly, in a mouse model of AML/ETO9a leukemia, disrupting the Runx binding sites resulted in decreased PU.1 levels. Leukemia onset was delayed, and limiting dilution transplantation experiments demonstrated functional loss of leukemia-initiating cells. This is surprising, because low PU.1 levels have been considered a hallmark of AML/ETO leukemia, as indicated in mouse models and as shown here in samples from leukemic patients. Our data demonstrate that Runx-dependent PU.1 chromatin interaction and transcription of PU.1 are essential for both normal and leukemia stem cells.


Subject(s)
Core Binding Factor alpha Subunits/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction , Trans-Activators/metabolism , Animals , Base Pairing/genetics , Binding Sites , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice, Inbred C57BL , Mutation/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Signal Transduction/genetics , Transcription, Genetic
19.
Blood ; 123(21): 3327-35, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24668493

ABSTRACT

Mutations in splice factor (SF) genes occur more frequently in myelodysplastic syndromes (MDS) than in acute myeloid leukemias (AML). We sequenced complementary DNA from bone marrow of 47 refractory anemia with excess blasts (RAEB) patients, 29 AML cases with low marrow blast cell count, and 325 other AML patients and determined the presence of SF-hotspot mutations in SF3B1, U2AF35, and SRSF2. SF mutations were found in 10 RAEB, 12 AML cases with low marrow blast cell count, and 25 other AML cases. Our study provides evidence that SF-mutant RAEB and SF-mutant AML are clinically, cytologically, and molecularly highly similar. An integrated analysis of genomewide messenger RNA (mRNA) expression profiling and DNA-methylation profiling data revealed 2 unique patient clusters highly enriched for SF-mutant RAEB/AML. The combined genomewide mRNA expression profiling/DNA-methylation profiling signatures revealed 1 SF-mutant patient cluster with an erythroid signature. The other SF-mutant patient cluster was enriched for NRAS/KRAS mutations and showed an inferior survival. We conclude that SF-mutant RAEB/AML constitutes a related disorder overriding the artificial separation between AML and MDS, and that SF-mutant RAEB/AML is composed of 2 molecularly and clinically distinct subgroups. We conclude that SF-mutant disorders should be considered as myeloid malignancies that transcend the boundaries of AML and MDS.


Subject(s)
DNA Methylation , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , Adult , Aged , Aged, 80 and over , Anemia, Refractory, with Excess of Blasts/genetics , DNA Fingerprinting , Female , Humans , Male , Middle Aged , Nuclear Proteins/genetics , Phosphoproteins/genetics , RNA Splicing Factors , Ribonucleoprotein, U2 Small Nuclear/genetics , Ribonucleoproteins/genetics , Serine-Arginine Splicing Factors , Splicing Factor U2AF
SELECTION OF CITATIONS
SEARCH DETAIL