Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Med Chem ; 64(10): 6745-6764, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33975430

ABSTRACT

The kinase DYRK1A is an attractive target for drug discovery programs due to its implication in multiple diseases. Through a fragment screen, we identified a simple biaryl compound that is bound to the DYRK1A ATP site with very high efficiency, although with limited selectivity. Structure-guided optimization cycles enabled us to convert this fragment hit into potent and selective DYRK1A inhibitors. Exploiting the structural differences in DYRK1A and its close homologue DYRK2, we were able to fine-tune the selectivity of our inhibitors. Our best compounds potently inhibited DYRK1A in the cell culture and in vivo and demonstrated drug-like properties. The inhibition of DYRK1A in vivo translated into dose-dependent tumor growth inhibition in a model of ovarian carcinoma.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Animals , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism , Drug Evaluation, Preclinical , Female , Humans , Mice , Mice, Nude , Molecular Docking Simulation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Phosphorylation/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Pyrimidines/chemistry , Pyrimidines/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Structure-Activity Relationship , Dyrk Kinases
2.
J Med Chem ; 64(13): 8971-8991, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34143631

ABSTRACT

The serine/threonine kinase DYRK1A has been implicated in regulation of a variety of cellular processes associated with cancer progression, including cell cycle control, DNA damage repair, protection from apoptosis, cell differentiation, and metastasis. In addition, elevated-level DYRK1A activity has been associated with increased severity of symptoms in Down's syndrome. A selective inhibitor of DYRK1A could therefore be of therapeutic benefit. We have used fragment and structure-based discovery methods to identify a highly selective, well-tolerated, brain-penetrant DYRK1A inhibitor which showed in vivo activity in a tumor model. The inhibitor provides a useful tool compound for further exploration of the effect of DYRK1A inhibition in models of disease.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Dyrk Kinases
3.
J Med Chem ; 63(22): 13762-13795, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33146521

ABSTRACT

Myeloid cell leukemia 1 (Mcl-1) has emerged as an attractive target for cancer therapy. It is an antiapoptotic member of the Bcl-2 family of proteins, whose upregulation in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy. Here we report the discovery of our clinical candidate S64315, a selective small molecule inhibitor of Mcl-1. Starting from a fragment derived lead compound, we have conducted structure guided optimization that has led to a significant (3 log) improvement of target affinity as well as cellular potency. The presence of hindered rotation along a biaryl axis has conferred high selectivity to the compounds against other members of the Bcl-2 family. During optimization, we have also established predictive PD markers of Mcl-1 inhibition and achieved both efficient in vitro cell killing and tumor regression in Mcl-1 dependent cancer models. The preclinical candidate has drug-like properties that have enabled its development and entry into clinical trials.


Subject(s)
Antineoplastic Agents/chemistry , Drug Discovery/methods , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Animals , Antineoplastic Agents/pharmacology , Dose-Response Relationship, Drug , Female , HCT116 Cells , HeLa Cells , Humans , Mice , Mice, SCID , Protein Structure, Secondary , Protein Structure, Tertiary
4.
J Med Chem ; 62(15): 6913-6924, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31339316

ABSTRACT

Myeloid cell leukemia 1 (Mcl-1), an antiapoptotic member of the Bcl-2 family of proteins, whose upregulation when observed in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy, has emerged as an attractive target for cancer therapy. Here, we report the discovery of selective small molecule inhibitors of Mcl-1 that inhibit cellular activity. Fragment screening identified thienopyrimidine amino acids as promising but nonselective hits that were optimized using nuclear magnetic resonance and X-ray-derived structural information. The introduction of hindered rotation along a biaryl axis has conferred high selectivity to the compounds, and cellular activity was brought on scale by offsetting the negative charge of the anchoring carboxylate group. The obtained compounds described here exhibit nanomolar binding affinity and mechanism-based cellular efficacy, caspase induction, and growth inhibition. These early research efforts illustrate drug discovery optimization from thienopyrimidine hits to a lead compound, the chemical series leading to the identification of our more advanced compounds S63845 and S64315.


Subject(s)
Cell Survival/physiology , Drug Discovery/methods , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Pyrimidines/chemistry , Pyrimidines/metabolism , Thiophenes/chemistry , Thiophenes/metabolism , Cell Survival/drug effects , HCT116 Cells , HeLa Cells , Humans , Protein Structure, Tertiary , Pyrimidines/pharmacology , Structure-Activity Relationship , Thiophenes/pharmacology
5.
Antimicrob Agents Chemother ; 47(1): 118-23, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12499178

ABSTRACT

The protease inhibitor (PI) ritonavir is used as a strong inhibitor of cytochrome P450 3A4, which boosts the activities of coadministered PIs, resulting in augmented plasma PI levels, simplification of the dosage regimen, and better efficacy against resistant viruses. The objectives of the present open-label, multiple-dose study were to determine the steady-state pharmacokinetics of amprenavir administered at 600 mg twice daily (BID) and ritonavir administered at 100 mg BID in human immunodeficiency virus type 1 (HIV-1)-infected adults treated with different antiretroviral combinations including or not including a nonnucleoside reverse transcriptase inhibitor (NNRTI). Nineteen patients completed the study. The steady-state mean minimum plasma amprenavir concentration (C(min,ss)) was 1.92 microg/ml for patients who received amprenavir and ritonavir without an NNRTI and 1.36 microg/ml for patients who received amprenavir and ritonavir plus efavirenz. For patients who received amprenavir-ritonavir without an NNRTI, the steady-state mean peak plasma amprenavir concentration (C(max,ss)) was 7.12 microg/ml, the area under the concentration-time curve from 0 to 10 h (AUC(0-10)) was 32.06 microg. h/ml, and the area under the concentration-time curve over a dosing interval (12 h) at steady-state (AUC(ss)) was 35.74 microg. h/ml. Decreases in the mean values of C(min,ss) (29%), C(max,ss) (42%), AUC(0-10) (42%), and AUC(ss) (40%) for amprenavir occurred when efavirenz was coadministered with amprenavir-ritonavir. No unexpected side effects were observed. As expected, coadministration of amprenavir with ritonavir resulted in an amprenavir C(min,ss) markedly higher than those previously reported for the marketed dose of amprenavir. When amprenavir-ritonavir was coadministered with efavirenz, amprenavir-ritonavir maintained a mean amprenavir C(min,ss) above the mean 50% inhibitory concentration of amprenavir previously determined for both wild-type HIV-1 isolates and HIV-1 strains isolated from PI-experienced patients. These data support the use of low-dose ritonavir to enhance the level of exposure to amprenavir and increase the efficacy of amprenavir.


Subject(s)
HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacokinetics , HIV-1 , Ritonavir/therapeutic use , Sulfonamides/pharmacokinetics , Adult , Alkynes , Area Under Curve , Benzoxazines , Carbamates , Cyclopropanes , Drug Administration Schedule , Drug Therapy, Combination , Female , Furans , HIV Infections/metabolism , HIV Protease Inhibitors/blood , HIV Protease Inhibitors/therapeutic use , Half-Life , Humans , Male , Oxazines/administration & dosage , Oxazines/therapeutic use , Ritonavir/administration & dosage , Ritonavir/blood , Sulfonamides/administration & dosage , Sulfonamides/blood
SELECTION OF CITATIONS
SEARCH DETAIL