Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Immunol ; 18(3): 293-302, 2017 03.
Article in English | MEDLINE | ID: mdl-28092373

ABSTRACT

The aggregation of hypertrophic macrophages constitutes the basis of all granulomatous diseases, such as tuberculosis or sarcoidosis, and is decisive for disease pathogenesis. However, macrophage-intrinsic pathways driving granuloma initiation and maintenance remain elusive. We found that activation of the metabolic checkpoint kinase mTORC1 in macrophages by deletion of the gene encoding tuberous sclerosis 2 (Tsc2) was sufficient to induce hypertrophy and proliferation, resulting in excessive granuloma formation in vivo. TSC2-deficient macrophages formed mTORC1-dependent granulomatous structures in vitro and showed constitutive proliferation that was mediated by the neo-expression of cyclin-dependent kinase 4 (CDK4). Moreover, mTORC1 promoted metabolic reprogramming via CDK4 toward increased glycolysis while simultaneously inhibiting NF-κB signaling and apoptosis. Inhibition of mTORC1 induced apoptosis and completely resolved granulomas in myeloid TSC2-deficient mice. In human sarcoidosis patients, mTORC1 activation, macrophage proliferation and glycolysis were identified as hallmarks that correlated with clinical disease progression. Collectively, TSC2 maintains macrophage quiescence and prevents mTORC1-dependent granulomatous disease with clinical implications for sarcoidosis.


Subject(s)
Granuloma/immunology , Macrophages/immunology , Multiprotein Complexes/metabolism , Sarcoidosis/immunology , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Line , Cyclin-Dependent Kinase 4/metabolism , Disease Progression , Granuloma/drug therapy , Humans , Macrophages/drug effects , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Small Interfering/genetics , Sarcoidosis/drug therapy , Signal Transduction , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics
2.
Cell Rep ; 30(5): 1542-1552.e7, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32023468

ABSTRACT

Mechanistic or mammalian target of rapamycin complex 1 (mTORC1) is an important regulator of effector functions, proliferation, and cellular metabolism in macrophages. The biochemical processes that are controlled by mTORC1 are still being defined. Here, we demonstrate that integrative multiomics in conjunction with a data-driven inverse modeling approach, termed COVRECON, identifies a biochemical node that influences overall metabolic profiles and reactions of mTORC1-dependent macrophage metabolism. Using a combined approach of metabolomics, proteomics, mRNA expression analysis, and enzymatic activity measurements, we demonstrate that Tsc2, a negative regulator of mTORC1 signaling, critically influences the cellular activity of macrophages by regulating the enzyme phosphoglycerate dehydrogenase (Phgdh) in an mTORC1-dependent manner. More generally, while lipopolysaccharide (LPS)-stimulated macrophages repress Phgdh activity, IL-4-stimulated macrophages increase the activity of the enzyme required for the expression of key anti-inflammatory molecules and macrophage proliferation. Thus, we identify Phgdh as a metabolic checkpoint of M2 macrophages.


Subject(s)
Cell Polarity , Genomics , Macrophages/cytology , Macrophages/metabolism , Models, Biological , Phosphoglycerate Dehydrogenase/metabolism , Animals , Cell Polarity/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Glutamic Acid/metabolism , Glycine/metabolism , Interleukin-4/pharmacology , Ketoglutaric Acids/metabolism , Kinetics , Macrophages/drug effects , Macrophages/enzymology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Phosphoglycerate Dehydrogenase/genetics , Principal Component Analysis , Serine/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL