Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
PLoS Pathog ; 20(5): e1012261, 2024 May.
Article in English | MEDLINE | ID: mdl-38805555

ABSTRACT

Marek's disease virus (MDV) vaccines were the first vaccines that protected against cancer. The avirulent turkey herpesvirus (HVT) was widely employed and protected billions of chickens from a deadly MDV infection. It is also among the most common vaccine vectors providing protection against a plethora of pathogens. HVT establishes latency in T-cells, allowing the vaccine virus to persist in the host for life. Intriguingly, the HVT genome contains telomeric repeat arrays (TMRs) at both ends; however, their role in the HVT life cycle remains elusive. We have previously shown that similar TMRs in the MDV genome facilitate its integration into host telomeres, which ensures efficient maintenance of the virus genome during latency and tumorigenesis. In this study, we investigated the role of the TMRs in HVT genome integration, latency, and reactivation in vitro and in vivo. Additionally, we examined HVT infection of feather follicles. We generated an HVT mutant lacking both TMRs (vΔTMR) that efficiently replicated in cell culture. We could demonstrate that wild type HVT integrates at the ends of chromosomes containing the telomeres in T-cells, while integration was severely impaired in the absence of the TMRs. To assess the role of TMRs in vivo, we infected one-day-old chickens with HVT or vΔTMR. vΔTMR loads were significantly reduced in the blood and hardly any virus was transported to the feather follicle epithelium where the virus is commonly shed. Strikingly, latency in the spleen and reactivation of the virus were severely impaired in the absence of the TMRs, indicating that the TMRs are crucial for the establishment of latency and reactivation of HVT. Our findings revealed that the TMRs facilitate integration of the HVT genome into host chromosomes, which ensures efficient persistence in the host, reactivation, and transport of the virus to the skin.


Subject(s)
Chickens , Marek Disease , Telomere , Virus Integration , Virus Latency , Animals , Chickens/virology , Telomere/genetics , Telomere/virology , Marek Disease/virology , Marek Disease/immunology , Marek Disease/prevention & control , Genetic Vectors , Herpesvirus 1, Meleagrid/genetics , Herpesvirus 1, Meleagrid/immunology , Marek Disease Vaccines/immunology , Marek Disease Vaccines/genetics , Genome, Viral , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/immunology , Repetitive Sequences, Nucleic Acid , Poultry Diseases/virology , Poultry Diseases/immunology , Poultry Diseases/prevention & control
2.
J Virol ; 97(5): e0024223, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37154764

ABSTRACT

pUL51 is a minor tegument protein important for viral assembly and cell-to-cell spread (CCS) but dispensable for replication in cell culture of all Herpesviruses for which its role has been investigated. Here, we show that pUL51 is essential for the growth of Marek's disease virus, an oncogenic alphaherpesvirus of chickens that is strictly cell-associated in cell culture. MDV pUL51 localized to the Golgi apparatus of infected primary skin fibroblasts, as described for other Herpesviruses. However, the protein was also observed at the surface of lipid droplets in infected chicken keratinocytes, hinting at a possible role of this compartment for viral assembly in the unique cell type involved in MDV shedding in vivo. Deletion of the C-terminal half of pUL51 or fusion of GFP to either the N- or C-terminus were sufficient to disable the protein's essential function(s). However, a virus with a TAP domain fused at the C-terminus of pUL51 was capable of replication in cell culture, albeit with viral spread reduced by 35% and no localization to lipid droplets. In vivo, we observed that although the replication of this virus was moderately impacted, its pathogenesis was strongly impaired. This study describes for the first time the essential role of pUL51 in the biology of a herpesvirus, its association to lipid droplets in a relevant cell type, and its unsuspected role in the pathogenesis of a herpesvirus in its natural host. IMPORTANCE Viruses usually spread from cell to cell through two mechanisms: cell-released virus and/or cell-to-cell spread (CCS). The molecular determinants of CCS and their importance in the biology of viruses during infection of their natural host are unclear. Marek's disease virus (MDV) is a deadly and highly contagious herpesvirus of chickens that produces no cell-free particles in vitro, and therefore, spreads only through CCS in cell culture. Here, we show that viral protein pUL51, an important factor for CCS of Herpesviruses, is essential for MDV growth in vitro. We demonstrate that the fusion of a large tag at the C-terminus of the protein is sufficient to moderately impair viral replication in vivo and almost completely abolish pathogenesis while only slightly reducing viral growth in vitro. This study thus uncovers a role for pUL51 associated with virulence, linked to its C-terminal half, and possibly independent of its essential functions in CCS.


Subject(s)
Alphaherpesvirinae , Herpesviridae , Herpesvirus 2, Gallid , Marek Disease , Animals , Chickens , Herpesvirus 2, Gallid/genetics , Herpesviridae/metabolism , Alphaherpesvirinae/metabolism , Virus Replication
3.
PLoS Pathog ; 18(8): e1010745, 2022 08.
Article in English | MEDLINE | ID: mdl-36037230

ABSTRACT

In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek's disease virus (MDV) recombinants expressing firefly luciferase during lytic replication. Upon characterization of the recombinant viruses in vitro, chickens were infected and the infection visualized in live animals over the course of 14 days. The luminescence signal was consistent with the known spatiotemporal kinetics of infection and the life cycle of MDV, and correlated well with the viral load measured by qPCR. Intriguingly, this in vivo bioimaging approach revealed two novel sites of MDV replication, the beak and the skin of the feet covered in scales. Feet skin infection was confirmed using a complementary fluorescence bioimaging approach with MDV recombinants expressing mRFP or GFP. Infection was detected in the intermediate epidermal layers of the feet skin that was also shown to produce infectious virus, regardless of the animals' age at and the route of infection. Taken together, this study highlights the value of in vivo whole body bioimaging in avian species by identifying previously overlooked sites of replication and shedding of MDV in the chicken host.


Subject(s)
Herpesviridae , Herpesvirus 2, Gallid , Marek Disease , Animals , Chickens , Ferrets , Mice
4.
Vet Res ; 55(1): 54, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671518

ABSTRACT

This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.


Subject(s)
Poultry Diseases , Virus Diseases , Animals , Poultry/virology , Poultry Diseases/virology , Skin/virology , Virus Diseases/veterinary , Virus Diseases/virology
5.
J Virol ; 96(5): e0142721, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34936483

ABSTRACT

Latency is a hallmark of herpesviruses, allowing them to persist in their host without virion production. Acute exposure to hypoxia (below 3% O2) was identified as a trigger of latent-to-lytic switch (reactivation) for human oncogenic gammaherpesviruses (Kaposi's sarcoma-associated virus [KSHV] and Epstein-Barr virus [EBV]). Therefore, we hypothesized that hypoxia could also induce reactivation of Marek's disease virus (MDV), which shares biological properties with EBV and KSHV (notably oncogenic properties), in lymphocytes. Acute exposure to hypoxia (1% O2) of two MDV-latently infected cell lines derived from MD tumors (3867K and MSB-1) induced MDV reactivation. A bioinformatic analysis of the RB-1B MDV genome revealed 214 putative hypoxia response element consensus sequences on 119 open reading frames. Reverse transcriptase quantitative PCR (RT-qPCR) analysis showed five MDV genes strongly upregulated early after hypoxia. In 3867K cells under normoxia, pharmacological agents mimicking hypoxia (MLN4924 and CoCl2) increased MDV reactivation, but to a lower level than real hypoxia. Overexpression of wild-type or stabilized human hypoxia inducible factor 1α (HIF-1α) in MSB-1 cells in normoxia also promoted MDV reactivation. Under such conditions, the lytic cycle was detected in cells with a sustainable HIF-1α expression but also in HIF-1α-negative cells, indicating that MDV reactivation is mediated by HIF-1 in a direct and/or indirect manner. Lastly, we demonstrated by a reporter assay that HIF-1α overexpression induced the transactivation of two viral promoters, shown to be upregulated in hypoxia. These results suggest that hypoxia may play a crucial role in the late lytic replication phase observed in vivo in MDV-infected chickens exhibiting tumors, since a hypoxic microenvironment is a hallmark of most solid tumors. IMPORTANCE Latent-to-lytic switch of herpesviruses (also known as reactivation) is responsible for pathology recurrences and/or viral shedding. Studying physiological triggers of reactivation is therefore important for health to limit lesions and viral transmission. Marek's disease virus (MDV) is a potent oncogenic alphaherpesvirus establishing latency in T lymphocytes and causing lethal T lymphomas in chickens. In vivo, a second lytic phase is observed during the tumoral stage. Hypoxia being a hallmark of tumors, we wondered whether hypoxia induces MDV reactivation in latently infected T lymphocytes, like previously shown for EBV and KSHV in B lymphocytes. In this study, we demonstrated that acute hypoxia (1% O2) triggers MDV reactivation in two MDV transformed T-cell lines. We provide some molecular basis of this reactivation by showing that hypoxia inducible factor 1 (HIF-1) overexpression induces MDV reactivation to an extent similar to that of hypoxia after 24 h. Hypoxia is therefore a reactivation stimulus shared by mammalian and avian oncogenic herpesviruses of different genera.


Subject(s)
Herpesvirus 2, Gallid , Hypoxia-Inducible Factor 1 , Hypoxia , Marek Disease , T-Lymphocytes , Virus Activation , Animals , Cell Line, Tumor , Chickens , Herpesvirus 2, Gallid/genetics , Hypoxia/virology , Hypoxia-Inducible Factor 1/metabolism , Lymphoma , Marek Disease/virology , T-Lymphocytes/virology
6.
J Virol ; 96(9): e0032122, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35412345

ABSTRACT

Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek's disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis. We established inverse PCRs to identify and characterize circRNA expression from the repeat regions of the MDV genome during viral replication, latency, and reactivation. We identified a large variety of viral circRNAs through precise mapping of full-length circular transcripts and detected matching sequences with several viral genes. Hot spots of circRNA expression included the transcriptional unit of the major viral oncogene encoding the Meq protein and the latency-associated transcripts (LATs). Moreover, we performed genome-wide bioinformatic analyses to extract back-splice junctions from lymphoma-derived samples. Using this strategy, we found that circRNAs were abundantly expressed in vivo from the same key virulence genes. Strikingly, the observed back-splice junctions do not follow a unique canonical pattern, compatible with the U2-dependent splicing machinery. Numerous noncanonical junctions were observed in viral circRNA sequences characterized from in vitro and in vivo infections. Given the importance of the genes involved in the transcription of these circRNAs, our study contributes to our understanding and complexity of this deadly pathogen. IMPORTANCE Circular RNAs (circRNAs) were rediscovered in recent years both in physiological and pathological contexts, such as in cancer. Viral circRNAs are encoded by at least two human herpesviruses, the Epstein Barr virus and the Kaposi's Sarcoma-associated herpesvirus, both associated with the development of lymphoma. Marek's disease virus (MDV) is a well-established animal model to study virus-induced lymphoma but circRNA expression has not been reported for MDV yet. Our study provided the first evidence of viral circRNAs that were expressed at key steps of the MDV lifecycle using genome-wide analyses of circRNAs. These circRNAs were primarily found in transcriptional units that corresponded to the major MDV virulence factors. In addition, we established a bioinformatics pipeline that offers a new tool to identify circular RNAs in other herpesviruses. This study on the circRNAs provided important insights into major MDV virulence genes and herpesviruses-mediated gene dysregulation.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 2, Gallid , Marek Disease , RNA, Circular , Animals , Chickens , Genome-Wide Association Study , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/pathogenicity , Lymphoma/virology , Marek Disease/virology , Oncogene Proteins, Viral/genetics , RNA, Circular/genetics , RNA, Untranslated/genetics , Virulence/genetics
7.
PLoS Pathog ; 17(10): e1010006, 2021 10.
Article in English | MEDLINE | ID: mdl-34673841

ABSTRACT

Marek's disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.


Subject(s)
B-Lymphocytes/virology , Marek Disease , Animals , Cellular Senescence/physiology , Chickens , Mardivirus , Phenotype
8.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-32999032

ABSTRACT

Viral tropism and transmission of herpesviruses are best studied in their natural host for maximal biological relevance. In the case of alphaherpesviruses, few reports have focused on those aspects, primarily because of the few animal models available as natural hosts that are compatible with such studies. Here, using Marek's disease virus (MDV), a highly contagious and deadly alphaherpesvirus of chickens, we analyze the role of tegument proteins pUL47 and pUL48 in the whole life cycle of the virus. We report that a virus lacking the UL48 gene (vΔUL48) is impaired in growth in cell culture and has diminished virulence in vivo In contrast, a virus lacking UL47 (vΔUL47) is unaffected in its growth in vitro and is as virulent in vivo as the wild-type (WT) virus. Surprisingly, we observed that vΔUL47 was unable to be horizontally transmitted to naive chickens, in contrast to the WT virus. In addition, we show that pUL47 is important for the splicing of UL44 transcripts encoding glycoprotein gC, a protein known as being essential for horizontal transmission of MDV. Importantly, we observed that the levels of gC are lower in the absence of pUL47. Notably, this phenotype is similar to that of another transmission-incompetent mutant ΔUL54, which also affects the splicing of UL44 transcripts. This is the first study describing the role of pUL47 in both viral transmission and the splicing and expression of gC.IMPORTANCE Host-to-host transmission of viruses is ideally studied in vivo in the natural host. Veterinary viruses such as Marek's disease virus (MDV) are, therefore, models of choice to explore these aspects. The natural host of MDV, the chicken, is small, inexpensive, and economically important. MDV is a deadly and contagious herpesvirus that can kill infected animals in less than 4 weeks. The virus naturally infects epithelial cells of the feather follicle epithelium from where it is shed into the environment. In this study, we demonstrate that the viral protein pUL47 is an essential factor for bird-to-bird transmission of the virus. We provide some molecular basis to this function by showing that pUL47 enhances the splicing and the expression of another viral gene, UL44, which is essential for viral transmission. pUL47 may have a similar function in human herpesviruses such as varicella-zoster virus or herpes simplex viruses.


Subject(s)
Herpesvirus 2, Gallid/physiology , Marek Disease/transmission , Marek Disease/virology , Poultry Diseases/virology , Viral Envelope Proteins/biosynthesis , Animals , Chickens , Genes, Viral , Herpesvirus 2, Gallid/genetics , Mutation , Poultry Diseases/transmission , RNA Splicing , Skin/virology , Viral Proteins/genetics , Viral Proteins/physiology , Viral Tropism/physiology , Virus Replication
9.
Vet Res ; 52(1): 21, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33588939

ABSTRACT

The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.g. cell biology, medicine, toxicology, cosmetology, and pharmacology). In contrast to other organs, 3D models were mostly and directly elaborated in humans due to its architectural simplicity and easy accessibility. The development of these models benefited from the societal pressure to reduce animal experiments. In this review, we first describe human and mouse skin structure and the major differences with other mammals and birds. Next, we describe the different 3D human skin models and their main applications. Finally, we review the available models for domestic animals and discuss the current and potential applications.


Subject(s)
Animals, Domestic/anatomy & histology , Models, Biological , Skin/anatomy & histology , Animals , Birds/anatomy & histology , Imaging, Three-Dimensional/veterinary , Mammals/anatomy & histology
10.
Vet Res ; 51(1): 24, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32093754

ABSTRACT

Marek's disease (MD) is a major disease of chickens induced by Marek's disease virus (MDV) associated to lethal lymphomas. Current MD vaccines protect against lymphomas, but fail to prevent infection and shedding. The control of MDV shedding is crucial in order to eradicate this highly contagious virus. Like pathogenic MDV, MD vaccines infect the feather follicles of the skin before being shed into the environment. MD vaccines constitute excellent models to study virus interaction with feathers, the unique excretion source of these viruses. Herein we studied the viral persistence in feathers of a MD vaccine, the recombinant turkey herpesvirus (rHVT-ND). We report that most of the birds showed a persistent HVT infection of feathers over 41 weeks with moderate viral loads. Interestingly, 20% of the birds were identified as low HVT producers, among which six birds cleared the infection. Indeed, after week 14-26, these birds named controllers had undetectable HVT DNA in their feathers through week 41. All vaccinated birds developed antibodies to NDV, which lasted until week 41 in 95% of the birds, including the controllers. No correlation was found between HVT loads in feathers and NDV antibody titers over time. Interestingly, no HVT DNA was detected in the spleens of four controllers. This is the first description of chickens that durably cleared MD vaccine infection of feathers suggesting that control of Mardivirus shedding is achievable by the host.


Subject(s)
Chickens , Feathers/virology , Herpesvirus 2, Gallid/physiology , Marek Disease Vaccines/pharmacology , Marek Disease/virology , Viral Load , Animals , Antibodies, Viral/blood
11.
J Virol ; 91(24)2017 12 15.
Article in English | MEDLINE | ID: mdl-28978699

ABSTRACT

Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that infects chickens and causes a deadly neoplastic disease. We previously demonstrated that MDV infection arrests cells in S phase and that the tegument protein VP22 plays a major role in this process. In addition, expression of VP22 induces double-strand breaks (DSBs) in the cellular DNA, suggesting that DNA damage and the associated cellular response might be favorable for the MDV life cycle. Here, we addressed the role of DNA damage in MDV replication and pathogenesis. We demonstrated that MDV induces DSBs during lytic infection in vitro and in the peripheral blood mononuclear cells of infected animals. Intriguingly, we did not observe DNA damage in latently infected MDV-induced lymphoblastoid cells, while MDV reactivation resulted in the onset of DNA lesions, suggesting that DNA damage and/or the resulting DNA damage response might be required for efficient MDV replication and reactivation. In addition, reactivation was significantly enhanced by the induction of DNA damage using a number of chemicals. Finally, we used recombinant viruses to show that VP22 is required for the induction of DNA damage in vivo and that this likely contributes to viral oncogenesis.IMPORTANCE Marek's disease virus is an oncogenic alphaherpesvirus that causes fatal T-cell lymphomas in chickens. MDV causes substantial losses in the poultry industry and is also used in small-animal models for virus-induced tumor formation. DNA damage not only is implicated in tumor development but also aids in the life cycle of several viruses; however, its role in MDV replication, latency, and reactivation remains elusive. Here, we demonstrate that MDV induces DNA lesions during lytic replication in vitro and in vivo DNA damage was not observed in latently infected cells; however, it was reinitiated during reactivation. Reactivation was significantly enhanced by the induction of DNA damage. Recombinant viruses that lacked the ability to induce DNA damage were defective in their ability to induce tumors, suggesting that DNA damage might also contribute to cellular transformation processes leading to MDV lymphomagenesis.


Subject(s)
DNA Breaks, Double-Stranded , Herpesvirus 2, Gallid/pathogenicity , Marek Disease/genetics , Marek Disease/virology , Virus Replication , Animals , Cell Cycle/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Viral/genetics , Chickens , DNA, Viral , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/physiology , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Marek Disease/physiopathology , Poultry Diseases/virology , Viral Proteins/genetics , Virus Activation
12.
Vet Res ; 49(1): 31, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587836

ABSTRACT

Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells.


Subject(s)
Atrophy/veterinary , Chickens , Herpesvirus 2, Gallid/physiology , Lymphoid Tissue/pathology , Marek Disease/physiopathology , Poultry Diseases/physiopathology , Animals , Apoptosis , Atrophy/pathology , Atrophy/physiopathology , Atrophy/virology , Cell Proliferation , Lymphoid Tissue/physiopathology , Lymphopenia , Marek Disease/pathology , Marek Disease/virology , Poultry Diseases/pathology , Poultry Diseases/virology
13.
J Gen Virol ; 97(2): 480-486, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26612074

ABSTRACT

T-lymphocytes are central targets of Marek's disease, a major chicken disease induced by the oncogenic alphaherpesvirus Marek's disease virus (MDV). T-lymphocyte infection is also associated with immunosuppression and virus latency. To decipher viral morphogenesis in T-lymphocytes, we used the recombinant vRB-1B 47EGFP marker virus to generate a new lymphoblastoid cell line, 3867K, that exhibited typical properties of other MDV-transformed chicken cell lines in term of cell markers, reactivation rate and infectivity. Examination of reactivating EGFP-positive 3867K cells by transmission electron microscopy revealed the presence of most types of herpesvirus particles inside the cells but no extracellular ones. Quantification of virion types indicated only 5% cytoplasmic particles, with 0.5% being mature. This study demonstrated that MDV morphogenesis is complete upon reactivation in T-lymphocytes, albeit with poor efficiency, with a defect in the exit of virions from the nucleus and secondary envelopment, as occurs in infected fibroblasts.


Subject(s)
Herpesvirus 2, Gallid/physiology , T-Lymphocytes/virology , Virion/ultrastructure , Virus Activation , Virus Assembly , Animals , Cell Line , Chickens , Fibroblasts/virology , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Herpesvirus 2, Gallid/genetics , Microscopy, Electron, Transmission , Molecular Biology/methods , Virology/methods
14.
Virol J ; 13: 7, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26742789

ABSTRACT

BACKGROUND: Marek's disease is a virus disease with worldwide distribution that causes major losses to poultry production. Vaccines against Marek's disease virus, an oncogenic alphaherpesvirus, reduce tumour formation but have no effect on virus shedding. Successful horizontal virus transmission is linked to the active viral replication in feather follicle epithelial cells of infected chickens, from which infectious viral particles are shed into the environment. The feather follicle epithelium is the sole tissue in which those infectious particles are produced and no in vitro cell-systems can support this highly efficient morphogenesis. We previously characterized embryonic stem-cell-derived keratinocytes, showing they display a marker-gene profile similar to skin keratinocytes, and therefore we tested their susceptibility to Marek's disease virus infection. FINDINGS: We show herein that keratinocytes derived from chicken embryonic stem-cells are fully permissive to the replication of either non-pathogenic or pathogenic Marek's disease viruses. All viruses replicated on all three keratinocyte lines and kinetics of viral production as well as viral loads were similar to those obtained on primary cells. Morphogenesis studies were conducted on infected keratinocytes and on corneocytes, showing that all types of capsids/virions were present inside the cells, but extracellular viruses were absent. CONCLUSIONS: The keratinocyte lines are the first epithelial cell-line showing ectodermal specific markers supporting Marek's disease virus replication. In this in vitro model the replication lead to the production of cell-associated viral progeny. Further work will be devoted to the study of relationship between 3D differentiation of keratinocytes and Marek's disease virus replication.


Subject(s)
Embryonic Stem Cells/cytology , Keratinocytes/cytology , Keratinocytes/virology , Mardivirus/physiology , Virus Replication , Animals , Cells, Cultured , Chick Embryo , Mardivirus/ultrastructure , Marek Disease/virology
15.
Virus Genes ; 51(2): 209-16, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26223320

ABSTRACT

Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics.


Subject(s)
Biodiversity , DNA Viruses/classification , DNA Viruses/isolation & purification , Skin/virology , Animals , Chickens , High-Throughput Nucleotide Sequencing
16.
Vet Res ; 45: 36, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24694064

ABSTRACT

Marek's disease virus (MDV) is a highly contagious herpesvirus which induces T-cell lymphoma in the chicken. This virus is still spreading in flocks despite forty years of vaccination, with important economical losses worldwide. The feather follicles, which anchor feathers into the skin and allow their morphogenesis, are considered as the unique source of MDV excretion, causing environmental contamination and disease transmission. Epithelial cells from the feather follicles are the only known cells in which high levels of infectious mature virions have been observed by transmission electron microscopy and from which cell-free infectious virions have been purified. Finally, feathers harvested on animals and dust are today considered excellent materials to monitor vaccination, spread of pathogenic viruses, and environmental contamination. This article reviews the current knowledge on MDV-skin interactions and discusses new approaches that could solve important issues in the future.


Subject(s)
Chickens , Herpesvirus 2, Gallid/physiology , Marek Disease/pathology , Marek Disease/virology , Poultry Diseases/virology , Skin Diseases, Viral/veterinary , Animals , Herpesvirus 2, Gallid/growth & development , Marek Disease/physiopathology , Poultry Diseases/pathology , Poultry Diseases/physiopathology , Skin Diseases, Viral/pathology , Skin Diseases, Viral/physiopathology , Skin Diseases, Viral/virology
17.
Virologie (Montrouge) ; 18(2): 75-86, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-33065877

ABSTRACT

Marek's disease virus (MDV) is a highly contagious herpesvirus which induces immunosuppression and T-cell lymphoma in chicken. This virus still circulates in flocks despite forty years of vaccination, with important economical losses at the world level. The feather follicles, which allow feathers morphogenesis and their anchor into the skin, are the unique known source of MDV excretion. This tissue causes environment contamination and MDV bird-to-bird transmission. Epithelial cells from the feather follicles are the only identified cells, in which high levels of infectious mature virions are visible by transmission electron microscopy and from which cell-free infectious virions have been purified. Finally, feathers harvested on animals and poultry dust are today considered as excellent materials in order to follow vaccination, circulation of pathogenic viruses and environment contamination. This article aims at summarizing the current knowledge on MDV-skin interactions and at suggesting new approaches which could solve important questions on MDV biology.

18.
Vet Res ; 44: 125, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24359464

ABSTRACT

Marek's disease virus (MDV) is an alpha-herpesvirus causing Marek's disease in chickens, mostly associated with T-cell lymphoma. VP22 is a tegument protein abundantly expressed in cells during the lytic cycle, which is essential for MDV spread in culture. Our aim was to generate a pathogenic MDV expressing a green fluorescent protein (EGFP) fused to the N-terminus of VP22 to better decipher the role of VP22 in vivo and monitor MDV morphogenesis in tumors cells. In culture, rRB-1B EGFP22 led to 1.6-fold smaller plaques than the parental virus. In chickens, the rRB-1B EGFP22 virus was impaired in its ability to induce lymphoma and to spread in contact birds. The MDV genome copy number in blood and feathers during the time course of infection indicated that rRB-1B EGFP22 reached its two major target cells, but had a growth defect in these two tissues. Therefore, the integrity of VP22 is critical for an efficient replication in vivo, for tumor formation and horizontal transmission. An examination of EGFP fluorescence in rRB-1B EGFP22-induced tumors showed that about 0.1% of the cells were in lytic phase. EGFP-positive tumor cells were selected by cytometry and analyzed for MDV morphogenesis by transmission electron microscopy. Only few particles were present per cell, and all types of virions (except mature enveloped virions) were detected unequivocally inside tumor lymphoid cells. These results indicate that MDV morphogenesis in tumor cells is more similar to the morphorgenesis in fibroblastic cells in culture, albeit poorly efficient, than in feather follicle epithelial cells.


Subject(s)
Chickens , Herpesvirus 2, Gallid/physiology , Herpesvirus 2, Gallid/pathogenicity , Marek Disease/virology , Poultry Diseases/virology , Viral Proteins/genetics , Animals , Carcinogenesis , Cells, Cultured , Green Fluorescent Proteins , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/metabolism , Marek Disease/pathology , Marek Disease/transmission , Poultry Diseases/pathology , Poultry Diseases/transmission , Viral Proteins/metabolism , Virulence , Virus Replication
19.
Avian Dis ; 57(2 Suppl): 340-50, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23901745

ABSTRACT

Marek's disease virus (MDV) is a highly contagious virus that induces T-lymphoma in chicken. This viral infection still circulates in poultry flocks despite the use of vaccines. With the emergence of new virulent strains in the field over time, MDV remains a serious threat to the poultry industry. More than 40 yr after MDV identification as a herpesvirus, the visualization and purification of fully enveloped infectious particles remain a challenge for biologists. The various strategies used to detect such hidden particles by electron microscopy are reviewed herein. It is now generally accepted that the production of cell-free virions only occurs in the feather follicle epithelium and is associated with viral, cellular, or both molecular determinants expressed in this tissue. This tissue is considered the only source of efficient virus shedding into the environment and therefore the origin of successful transmission in birds. In other avian tissues or permissive cell cultures, MDV replication only leads to a very low number of intracellular enveloped virions. In the absence of detectable extracellular enveloped virions in cell culture, the nature of the transmitted infectious material and its mechanisms of spread from cell to cell remain to be deciphered. An attempt is made to bring together the current knowledge on MDV morphogenesis and spread, and new approaches that could help understand MDV morphogenesis are discussed.


Subject(s)
Herpesvirus 1, Meleagrid/ultrastructure , Herpesvirus 2, Gallid/ultrastructure , Herpesvirus 3, Gallid/ultrastructure , Marek Disease/transmission , Poultry Diseases/transmission , Animals , Herpesvirus 1, Meleagrid/growth & development , Herpesvirus 2, Gallid/growth & development , Herpesvirus 3, Gallid/growth & development , Marek Disease/virology , Morphogenesis , Poultry , Poultry Diseases/virology
20.
PLoS One ; 17(10): e0271448, 2022.
Article in English | MEDLINE | ID: mdl-36206252

ABSTRACT

Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation. The integrity of the FF wall epithelium was confirmed by transmission electron microscopy at Day 5 and 7 of culture. A slight elongation of the feathers was detected up to 5 days for 75% of the examined feathers. By immunochemistry, we demonstrated the maintenance of expression and localization of two structural proteins: scaffoldin and fibronectin. Gene expression (assessed by qRT-PCR) of NCAM, LCAM, Wnt6, Notch1, and BMP4 was not altered. In contrast, Shh and HBS1 expression collapsed, DKK3 increased, and KRT14 transiently increased upon cultivation. This indicates that cultivation modifies the mRNA expression of a few genes, possibly due to reduced growth or cell differentiation in the feather, notably in the barb ridges. In conclusion, we have developed the first method that allows the culture and maintenance of chicken FF in vitro that preserves the structure and biology of the FF close to its in vivo state, despite transcriptional modifications of a few genes involved in feather development. This new culture model may serve to study feather interactions with pathogens or toxics and constitutes a way to reduce animal experimentation.


Subject(s)
Chickens , Feathers , Animals , Biological Evolution , Chickens/genetics , Feathers/metabolism , Fibronectins/metabolism , Hair Follicle , Humans , Morphogenesis , Neural Cell Adhesion Molecules/metabolism , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL