Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Commun Signal ; 22(1): 61, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263146

ABSTRACT

BACKGROUND: During human early placentation, a proportion of extravillous trophoblasts (EVTs) migrate to the maternal decidua, differentiating into endovascular EVTs to remodel spiral arteries and ensure the establishment of blood circulation at the maternal-fetal interface. Inadequate EVT migration and endovascular differentiation are closely associated with adverse pregnancy outcomes such as miscarriage. Activin A and fibronectin are both secretory molecules abundantly expressed at the maternal-fetal interface. Activin A has been reported to regulate EVT biological functions. However, whether fibronectin mediates activin A-promoted EVT migration and acquisition of endothelial-like phenotype as well as the underlying molecular mechanisms remain unknown. Additionally, the role of fibronectin in pregnancy establishment and maintenance warrants further investigation. METHODS: Primary and immortalized (HTR8/SVneo) human EVTs were used as in vitro study models. Cultured human first-trimester chorionic villous explants were utilized for ex vivo validation. A local fibronectin knockdown model in ICR mouse uteri, achieved by nonviral in vivo transfection with small interfering RNA (siRNA) targeting fibronectin 1 (si-Fn1), was employed to explore the roles of fibronectin in the establishment and maintenance of early pregnancy. RESULTS: Our results showed that activin A treatment significantly induced fibronectin 1 (FN1) mRNA expression and fibronectin protein production, which is essential for human trophoblast migration and endothelial-like tube formation. Both basal and activin A-upregulated fibronectin expression were abolished by the TGF-ß type I receptor inhibitor SB431542 or siRNA-mediated knockdown of activin receptor-like kinase (ALK4) or SMAD4. Moreover, activin A-increased trophoblast migration and endothelial-like tube formation were attenuated following the depletion of fibronectin. Fibronectin knockdown via intrauterine siRNA administration reduced CD31 and cytokeratin 8 (CK8) expression at the maternal-fetal interface, resulting in a decrease in the number of implantation sites and embryos. CONCLUSIONS: Our study demonstrates that activin A promotes trophoblast cell migration and acquisition of endothelial-like phenotype via ALK4-SMAD2/3-SMAD4-mediated fibronectin upregulation. Furthermore, through a local fibronectin knockdown model in mouse uteri, we found that the absence of fibronectin at the maternal-fetal interface impedes endovascular migration of trophoblasts and decidual vascularization, thereby interfering with early embryo implantation and the maintenance of pregnancy. These findings provide novel insights into placental development during early pregnancy establishment and contribute to the advancement of therapeutic approaches for managing pregnancy complications related to trophoblast dysfunction.


Subject(s)
Activins , Fibronectins , Placenta , Pregnancy , Mice , Animals , Humans , Female , Mice, Inbred ICR , Trophoblasts , RNA, Small Interfering
2.
Endocrinology ; 165(3)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38195194

ABSTRACT

BACKGROUND: Repeated implantation failure (RIF) leads to a waste of high-quality embryos and remains a challenge in assisted reproductive technology. During early human placentation, the invasion of trophoblast cells into the decidua is an essential step for the establishment of maternal-fetal interactions and subsequent successful pregnancy. Bone morphogenetic protein 2 (BMP2) has been reported to regulate endometrial receptivity and promote trophoblast invasion. However, whether there is dysregulation of endometrial BMP2 expression in patients with RIF remains unknown. Additionally, the molecular mechanisms underlying the effects of BMP2 on human trophoblast invasion and early placentation remain to be further elucidated. METHODS: Midluteal phase endometrial samples were biopsied from patients with RIF and from routine control in vitro fertilization followed by quantitative polymerase chain reaction and immunoblotting analyses. Human trophoblast organoids, primary human trophoblast cells, and an immortalized trophoblast cell line (HTR8/SVneo) were used as study models. RESULTS: We found that BMP2 was aberrantly low in midluteal phase endometrial tissues from patients with RIF. Recombinant human BMP2 treatment upregulated integrin ß3 (ITGB3) in a SMAD2/3-SMAD4 signaling-dependent manner in both HTR8/SVneo cells and primary trophoblast cells. siRNA-mediated integrin ß3 downregulation reduced both basal and BMP2-upregulated trophoblast invasion and vascular mimicry in HTR8/SVneo cells. Importantly, shRNA-mediated ITGB3 knockdown significantly decreased the formation ability of human trophoblast organoids. CONCLUSION: Our results demonstrate endometrial BMP2 deficiency in patients with RIF. ITGB3 mediates both basal and BMP2-promoted human trophoblast invasion and is essential for early placentation. These findings broaden our knowledge regarding the regulation of early placentation and provide candidate diagnostic and therapeutic targets for RIF clinical management.


Subject(s)
Bone Morphogenetic Protein 2 , Integrin beta3 , Pregnancy , Humans , Female , Integrin beta3/genetics , Integrin beta3/metabolism , Bone Morphogenetic Protein 2/metabolism , Trophoblasts/metabolism , Cell Line , Placentation/physiology , RNA, Small Interfering/metabolism , Cell Movement
3.
Article in English | MEDLINE | ID: mdl-39395024

ABSTRACT

OBJECTIVE: Rab11A is an important molecule for recycling endosomes and is closely related to the proliferation, invasion, and metastasis of tumors. This study investigated the prognostic and immune significance of Rab11A and validated its potential function and mechanism in breast cancer (BRCA). METHODS: RNA sequencing data for 33 tumors were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases. Correlation analysis was used to evaluate the relationship between Rab11A expression and immune characteristics. Potential pathways were identified using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis. Immunohistochemical analysis, colony formation assay, bromodeoxyuridine incorporation assay, immunofluorescence, and Western blot were used to explore potential function and mechanism. RESULTS: Analysis of the TCGA database showed significant upregulation of Rab11A expression in a variety of cancers. Rab11A was up-regulated in 82.4% of BRCA. High Rab11A expression is associated with poor survival in cancer patients and is a predictor of poor prognosis. CIBERSORT analysis showed that Rab11A was negatively associated with almost all immune cycle activity scores pan-cancer. The results of the TCGA-BRCA cohort were further confirmed by using pathological samples from clinical BRCA patients. The results showed that Rab11A expression was correlated with estrogen receptor (ER) and progesterone receptor expression in BRCA (p < 0.05). Knockdown and overexpression of Rab11A affected the proliferation of BRCA cells. Further mechanistic studies revealed that down-regulation of ER alpha (ERα) and up-regulation of ER beta (ERß) mediated Rab11A-induced inhibition of BRCA cell proliferation. CONCLUSION: Rab11A expression in pan-cancer is associated with poor prognosis and immune profile. In particular, in BRCA, Rab11A expression regulates cell proliferation by targeting ERα and ERß. High Rab11A expression is tightly associated with immune characteristics, tumor microenvironment, and genetic mutations. These results provide a reference for exploring the role of Rab11A in pan-cancer and provide a new perspective for revealing potential therapeutic targets in BRCA.

4.
EBioMedicine ; 93: 104664, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37331163

ABSTRACT

BACKGROUND: Preeclampsia (PE) is a common hypertensive pregnancy disorder associated with shallow trophoblast invasion. Although bone morphogenetic protein 2 (BMP2) has been shown to promote trophoblast invasion in vitro, its cellular origin and molecular regulation in placenta, as well as its potential role in PE, has yet to be established. Additionally, whether BMP2 and/or its downstream molecules could serve as potential diagnostic or therapeutic targets for PE has not been explored. METHODS: Placentas and sera from PE and healthy pregnant women were subjected to multi-omics analyses, immunoblots, qPCR, and ELISA assays. Immortalized trophoblast cells, primary cultures of human trophoblasts, and first-trimester villous explants were used for in vitro experiments. Adenovirus expressing sFlt-1 (Ad Flt1)-induced PE rat model was used for in vivo studies. FINDINGS: We find globally decreased H3K27me3 modifications and increased BMP2 signalling in preeclamptic placentas, which is negatively correlated with clinical manifestations. BMP2 is derived from Hofbauer cells and epigenetically regulated by H3K27me3 modification. BMP2 promotes trophoblast invasion and vascular mimicry by upregulating BMP6 via BMPR1A-SMAD2/3-SMAD4 signalling. BMP2 supplementation alleviates high blood pressure and fetal growth restriction phenotypes in Ad Flt1-induced rat PE model. INTERPRETATION: Our findings demonstrate that epigenetically regulated Hofbauer cell-derived BMP2 signalling enhancement in late gestation could serve as a compensatory response for shallow trophoblast invasion in PE, suggesting opportunities for diagnostic marker and therapeutic target applications in PE clinical management. FUNDING: National Key Research and Development Program of China (2022YFC2702400), National Natural Science Foundation of China (82101784, 82171648, 31988101), and Natural Science Foundation of Shandong Province (ZR2020QH051, ZR2020MH039).


Subject(s)
Pre-Eclampsia , Trophoblasts , Pregnancy , Humans , Female , Rats , Animals , Trophoblasts/metabolism , Histones/metabolism , Pre-Eclampsia/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/pharmacology , Placenta/metabolism , Cell Movement
SELECTION OF CITATIONS
SEARCH DETAIL