Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Med Genet ; 60(2): 193-203, 2023 02.
Article in English | MEDLINE | ID: mdl-35396272

ABSTRACT

BACKGROUND: High myopia (HM) is a leading cause of blindness that has a strong genetic predisposition. However, its genetic and pathogenic mechanisms remain largely unknown. Thus, this study aims to determine the genetic profile of individuals from two large Chinese families with HM and 200 patients with familial/sporadic HM. We also explored the pathogenic mechanism of HM using HEK293 cells and a mouse model. METHODS: The participants underwent genome-wide linkage analysis and exome sequencing. Visual acuity, electroretinogram response, refractive error, optical parameters and retinal rod cell genesis were measured in knockout mice. Immunofluorescent staining, biotin-labelled membrane protein isolation and electrophysiological characterisation were conducted in cells transfected with overexpression plasmids. RESULTS: A novel HM locus on Xp22.2-p11.4 was identified. Variant c.539C>T (p.Pro180Leu) in GLRA2 gene was co-segregated with HM in the two families. Another variant, c.458G>A (p.Arg153Gln), was identified in a sporadic sample. The Glra2 knockout mice showed myopia-related phenotypes, decreased electroretinogram responses and impaired retinal rod cell genesis. Variants c.458G>A and c.539C>T altered the localisation of GlyRα2 on the cell membrane and decreased agonist sensitivity. CONCLUSION: GLRA2 was identified as a novel HM-causing gene. Its variants would cause HM through altered visual experience by impairing photoperception and visual transmission.


Subject(s)
Myopia , Receptors, Glycine , Animals , Humans , Mice , HEK293 Cells , Mice, Knockout , Mutation , Myopia/genetics , Phenotype , Receptors, Glycine/genetics
2.
Cell Mol Neurobiol ; 43(1): 155-175, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35032275

ABSTRACT

Phosphorylation of N-methyl-D-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.


Subject(s)
Chronic Pain , Receptors, N-Methyl-D-Aspartate , Humans , Phosphorylation , Receptors, N-Methyl-D-Aspartate/metabolism , Chronic Pain/drug therapy , src-Family Kinases/metabolism , Protein Kinase C/metabolism
3.
Cell Mol Neurobiol ; 43(2): 575-584, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35332400

ABSTRACT

Nav1.3, encoded by the SCN3A gene, is a voltage-gated sodium channel on the cell membrane. It is expressed abundantly in the fetal brain but little in the normal adult brain. It is involved in the generation and conduction of action potentials in excitable cells. Nav1.3 plays an important role in many neurological diseases. The aim of this review is to summarize new findings about Nav1.3 in the field of neurology. Many mutations of SCN3A can lead to neuronal hyperexcitability and then cause epilepsy. The rapid recovery from inactivation and slow closed-state inactivation kinetics of Nav1.3 leads to a reduced activation threshold of the channel and a high frequency of firing of neurons. Hyperactivity of Nav1.3 also induces increased excitability of sensory neurons, a lower nociceptive threshold, and neuropathic pain. This review summarizes the structure and the function of Nav1.3 and focuses on its relationship with epilepsy and neuropathic pain.


Subject(s)
Neuralgia , Sodium Channels , Humans , Adult , Sodium Channels/metabolism , Neuralgia/metabolism , Action Potentials , Mutation , Sensory Receptor Cells/metabolism
4.
J Neurosci ; 41(30): 6415-6429, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34252035

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with GÓ§6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.


Subject(s)
Calcium Channels, L-Type/metabolism , Protein Kinase C/metabolism , Protein Transport/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Phosphorylation
5.
Age Ageing ; 50(2): 284-293, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33201226

ABSTRACT

BACKGROUND: High incidence of venous thromboembolic complications in coronavirus disease 2019 (COVID-19) patients was noted recently. OBJECTIVE: This study aimed to explore the factors associated with prevalence of venous thromboembolism (VTE) in COVID-19 patients. METHODS: A literature search was conducted in several online databases. Fixed effects meta-analysis was performed for the factors associated with prevalence of VTE in COVID-19 patients. RESULTS: A total of 39 studies were analysed in this analysis. The incidence of pulmonary embolism and VTE in severe COVID-19 patients were 17% (95% CI, 13-21%) and 42% (95% CI, 25-60%), respectively. VTE were more common among individuals with COVID-19 of advance age. Male COVID-19 patients are more likely to experience VTE. Higher levels of white blood cell (WBC; WMD = 1.34 × 109/L; 95% CI, 0.84-1.84 × 109/L), D-dimer (WMD = 4.21 µg/ml; 95% CI, 3.77-4.66 µg/ml), activated partial thromboplastin time (APTT; WMD = 2.03 s; 95% CI, 0.83-3.24 s), fibrinogen (WMD = 0.49 µg/ml; 95% CI, 0.18-0.79 g/L) and C-reactive protein (CRP; WMD = 21.89 mg/L; 95% CI, 11.44-32.34 mg/L) were commonly noted in COVID-19 patients with VTE. Patients with lower level of lymphocyte (WMD = -0.15 × 109/L; 95% CI, -0.23--0.07 × 109/L) was at high risk of developing VTE. The incidence of severe condition (OR = 2.66; 95% CI, 1.95-3.62) was more likely to occur among COVID-19 patients who developed VTE. CONCLUSION: VTE is a common complication in severe COVID-19 patients and thromboembolic events are also associated with adverse outcomes.


Subject(s)
COVID-19 , Venous Thromboembolism , Aged , Blood Coagulation Tests/methods , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Humans , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Venous Thromboembolism/diagnosis , Venous Thromboembolism/etiology
6.
Cell Mol Life Sci ; 76(10): 1889-1899, 2019 May.
Article in English | MEDLINE | ID: mdl-30788514

ABSTRACT

Chronic neuropathic pain is a debilitating condition that remains challenging to treat. Glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been used to treat neuropathic pain, but the exact sites of their actions have been unclear until recently. Although conventionally postsynaptic, NMDARs are also expressed presynaptically, particularly at the central terminals of primary sensory neurons, in the spinal dorsal horn. However, presynaptic NMDARs in the spinal cord are normally quiescent and are not actively involved in physiological nociceptive transmission. In this review, we describe the emerging role of presynaptic NMDARs at the spinal cord level in chronic neuropathic pain and the implications of molecular mechanisms for more effective treatment. Recent studies indicate that presynaptic NMDAR activity at the spinal cord level is increased in several neuropathic pain conditions but not in chronic inflammatory pain. Increased presynaptic NMDAR activity can potentiate glutamate release from primary afferent terminals to spinal dorsal horn neurons, which is crucial for the synaptic plasticity associated with neuropathic pain caused by traumatic nerve injury and chemotherapy-induced peripheral neuropathy. Furthermore, α2δ-1, previously considered a calcium channel subunit, can directly interact with NMDARs through its C-terminus to increase presynaptic NMDAR activity by facilitating synaptic trafficking of α2δ-1-NMDAR complexes in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury. Targeting α2δ-1-bound NMDARs with gabapentinoids or α2δ-1 C-terminus peptides can attenuate nociceptive drive form primary sensory nerves to dorsal horn neurons in neuropathic pain.


Subject(s)
Neuralgia/physiopathology , Nociceptive Pain/physiopathology , Receptors, N-Methyl-D-Aspartate/physiology , Receptors, Presynaptic/physiology , Spinal Cord/physiopathology , Animals , Mice , Neuralgia/metabolism , Nociception/physiology , Nociceptive Pain/metabolism , Nociceptors/metabolism , Nociceptors/physiology , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Presynaptic/metabolism
7.
J Neurochem ; 148(2): 275-290, 2019 01.
Article in English | MEDLINE | ID: mdl-30444263

ABSTRACT

Opioid-induced hyperalgesia and analgesic tolerance can lead to dose escalation and inadequate pain treatment with µ-opioid receptor agonists. Opioids cause tonic activation of glutamate NMDA receptors (NMDARs) at primary afferent terminals, increasing nociceptive input. However, the signaling mechanisms responsible for opioid-induced activation of pre-synaptic NMDARs in the spinal dorsal horn remain unclear. In this study, we determined the role of MAPK signaling in opioid-induced pre-synaptic NMDAR activation caused by chronic morphine administration. Whole-cell recordings of excitatory post-synaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine administration markedly increased the frequency of miniature EPSCs, increased the amplitude of monosynaptic EPSCs evoked from the dorsal root, and reduced the paired-pulse ratio of evoked EPSCs. These changes were fully reversed by an NMDAR antagonist and normalized by inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2), p38, or c-Jun N-terminal kinase (JNK). Furthermore, intrathecal injection of a selective ERK1/2, p38, or JNK inhibitor blocked pain hypersensitivity induced by chronic morphine treatment. These inhibitors also similarly attenuated a reduction in morphine's analgesic effect in rats. In addition, co-immunoprecipitation assays revealed that NMDARs formed a protein complex with ERK1/2, p38, and JNK in the spinal cord and that chronic morphine treatment increased physical interactions of NMDARs with these three MAPKs. Our findings suggest that opioid-induced hyperalgesia and analgesic tolerance are mediated by tonic activation of pre-synaptic NMDARs via three functionally interrelated MAPKs at the spinal cord level. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Analgesics, Opioid/pharmacology , Drug Tolerance/physiology , MAP Kinase Signaling System/physiology , Posterior Horn Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Male , Morphine/pharmacology , Posterior Horn Cells/drug effects , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, Presynaptic/drug effects , Receptors, Presynaptic/metabolism
8.
Anesthesiology ; 130(5): 804-819, 2019 05.
Article in English | MEDLINE | ID: mdl-30839350

ABSTRACT

BACKGROUND: Chronic use of µ-opioid receptor agonists paradoxically causes both hyperalgesia and the loss of analgesic efficacy. Opioid treatment increases presynaptic N-methyl-D-aspartate receptor activity to potentiate nociceptive input to spinal dorsal horn neurons. However, the mechanism responsible for this opioid-induced activation of presynaptic N-methyl-D-aspartate receptors remains unclear. α2δ-1, formerly known as a calcium channel subunit, interacts with N-methyl-D-aspartate receptors and is primarily expressed at presynaptic terminals. This study tested the hypothesis that α2δ-1-bound N-methyl-D-aspartate receptors contribute to presynaptic N-methyl-D-aspartate receptor hyperactivity associated with opioid-induced hyperalgesia and analgesic tolerance. METHODS: Rats (5 mg/kg) and wild-type and α2δ-1-knockout mice (10 mg/kg) were treated intraperitoneally with morphine twice/day for 8 consecutive days, and nociceptive thresholds were examined. Presynaptic N-methyl-D-aspartate receptor activity was recorded in spinal cord slices. Coimmunoprecipitation was performed to examine protein-protein interactions. RESULTS: Chronic morphine treatment in rats increased α2δ-1 protein amounts in the dorsal root ganglion and spinal cord. Chronic morphine exposure also increased the physical interaction between α2δ-1 and N-methyl-D-aspartate receptors by 1.5 ± 0.3 fold (means ± SD, P = 0.009, n = 6) and the prevalence of α2δ-1-bound N-methyl-D-aspartate receptors at spinal cord synapses. Inhibiting α2δ-1 with gabapentin or genetic knockout of α2δ-1 abolished the increase in presynaptic N-methyl-D-aspartate receptor activity in the spinal dorsal horn induced by morphine treatment. Furthermore, uncoupling the α2δ-1-N-methyl-D-aspartate receptor interaction with an α2δ-1 C terminus-interfering peptide fully reversed morphine-induced tonic activation of N-methyl-D-aspartate receptors at the central terminal of primary afferents. Finally, intraperitoneal injection of gabapentin or intrathecal injection of an α2δ-1 C terminus-interfering peptide or α2δ-1 genetic knockout abolished the mechanical and thermal hyperalgesia induced by chronic morphine exposure and largely preserved morphine's analgesic effect during 8 days of morphine treatment. CONCLUSIONS: α2δ-1-Bound N-methyl-D-aspartate receptors contribute to opioid-induced hyperalgesia and tolerance by augmenting presynaptic N-methyl-D-aspartate receptor expression and activity at the spinal cord level.


Subject(s)
Calcium Channels, L-Type/physiology , Calcium Channels/physiology , Hyperalgesia/chemically induced , Morphine/pharmacology , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Drug Tolerance , Female , Gabapentin/pharmacology , Ganglia, Spinal/physiology , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Spinal Cord/physiology
9.
Exp Parasitol ; 198: 17-25, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30682337

ABSTRACT

Toxoplasmosis is a widely distributed parasitic protozoan disease, caused by Toxoplasma gondii (T. gondii). High prevalence of toxoplasmosis and limitations of conventional treatments lead to a search for new therapeutic drugs. Lycosin-I is a linear peptide, derived from the venom of the spider Lycosa singoriensis. The aim of the present study was to determine the anti-parasitic effect of lycosin-Ι against T. gondii. In vitro, the anti-T. gondii activities of lycosin-Ι were evaluated by MTT assay, trypan blue exclusion assay, cell counting assay and plaque assay. Cytokines of IL-6 and IL-8 were measured by quantitative PCR. In addition, the structures of tachyzoites treated with lycosin-Ι were also observed by scanning and transmission electron microscopy. In vivo, mice were challenged with parasites treated by lycosin-I. The results revealed that lycosin-Ι had shown a significant ability to inhibit T. gondii invasion and proliferation. Cytokines of IL-6 and IL-8 were reduced by lycosin-Ι at transcription level in human foreskin fibroblast (HFF) cells infected with T. gondii tachyzoites, but they were increased compared to non-infected cells. For tachyzoites, lycosin-Ι induced their cell membrane alterations with formation of invaginations, some of them appeared to be vacuolated in their cytoplasm. Moreover, lycosin-Ι had prolonged the survival time of mice by controlling T. gondii proliferation. In conclusion, our present study provides the first evidence for anti-T. gondii by using the spider peptide lycosin-Ι. These findings suggest that lycosin-Ι is a potential alternative agent for the treatment of toxoplasmosis.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Coccidiostats/pharmacology , Spider Venoms/pharmacology , Toxoplasma/drug effects , Animals , Antimicrobial Cationic Peptides/chemistry , Cell Count , Cell Membrane/drug effects , Cells, Cultured , Coccidiostats/chemistry , Female , Fibroblasts/drug effects , Fibroblasts/parasitology , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Male , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction , Spider Venoms/chemistry , Tetrazolium Salts , Thiazoles , Toxoplasma/immunology , Toxoplasma/ultrastructure , Trypan Blue
10.
Inflamm Res ; 67(5): 455-466, 2018 May.
Article in English | MEDLINE | ID: mdl-29523916

ABSTRACT

OBJECTIVE: The peptide lycosin-I has anti-bacterial and anti-cancer capacities. However, the anti-inflammatory activity of lycosin-I remains unknown. We investigated whether lycosin-I could attenuate inflammation. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with lycosin-I before exposure to tumor necrosis factor-α (TNF-α). The expression of intercellular cell adhesion molecule-1 (ICAM-1), nuclear transcription factor-kappa B (NF-κB) p65 and inhibitory subunit of NF-κB alpha (IκBα) was evaluated by western blot. The expression of interleukin-6 (IL-6) and interleukin-8 (IL-8) was detected by quantitative RT-PCR or ELISA. Immunofluorescence analysis was used to determine the impact of lycosin-I on NF-κB pathway. C57BL/6 mice were pretreated with lycosin-I before exposure with lipopolysaccharide (LPS). RESULTS: Lycosin-I significantly reduced the TNF-α-enhanced expression of IL-6, IL-8 and ICAM-1. Lycosin-I also inhibited the human monocyte cells adhesion to HUVECs. We further demonstrated that lycosin-I could effectively suppress the reaction of endothelial cells to TNF-α by inhibiting IκBα degradation. Subsequently, the phosphorylation and translocation of NF-κB p65 could also be attenuated. Furthermore, lycosin-I exhibited a significant protection of C57BL/6 mice against LPS-induced death. CONCLUSIONS: Our results suggested that the anti-inflammatory activity of lycosin-I was associated with NF-κB activation and lycosin-I had potential to be a novel therapeutic candidate for inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Inflammation/prevention & control , NF-kappa B/antagonists & inhibitors , Signal Transduction/drug effects , Spider Venoms/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Human Umbilical Vein Endothelial Cells/drug effects , Humans , I-kappa B Kinase/biosynthesis , Inflammation/chemically induced , Inflammation/mortality , Intercellular Adhesion Molecule-1/biosynthesis , Lipopolysaccharides/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , NF-kappa B/biosynthesis , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/biosynthesis
11.
J Biol Chem ; 288(28): 20392-403, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23703613

ABSTRACT

In the present study, we investigated the structure and function of hainantoxin-III (HNTX-III), a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. HNTX-III suppressed Nav1.7 current amplitude without significantly altering the activation, inactivation, and repriming kinetics. Short extreme depolarizations partially activated the toxin-bound channel, indicating voltage-dependent inhibition of HNTX-III. HNTX-III increased the deactivation of the Nav1.7 current after extreme depolarizations. The HNTX-III·Nav1.7 complex was gradually dissociated upon prolonged strong depolarizations in a voltage-dependent manner, and the unbound toxin rebound to Nav1.7 after a long repolarization. Moreover, analysis of chimeric channels showed that the DIIS3-S4 linker was critical for HNTX-III binding to Nav1.7. These data are consistent with HNTX-III interacting with Nav1.7 site 4 and trapping the domain II voltage sensor in the closed state. The solution structure of HNTX-III was determined by two-dimensional NMR and shown to possess an inhibitor cystine knot motif. Structural analysis indicated that certain basic, hydrophobic, and aromatic residues mainly localized in the C terminus may constitute an amphiphilic surface potentially involved in HNTX-III binding to Nav1.7. Taken together, our results show that HNTX-III is distinct from ß-scorpion toxins and other ß-spider toxins in its mechanism of action and binding specificity and affinity. The present findings contribute to our understanding of the mechanism of toxin-sodium channel interaction and provide a useful tool for the investigation of the structure and function of sodium channel isoforms and for the development of analgesics.


Subject(s)
Spider Venoms/pharmacology , Spiders/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/metabolism , Animals , Cells, Cultured , Ganglia, Spinal/cytology , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Kinetics , Magnetic Resonance Spectroscopy , Membrane Potentials/drug effects , Mice , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Patch-Clamp Techniques , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Rats, Sprague-Dawley , Spider Venoms/chemistry , Spiders/genetics , Tetrodotoxin/pharmacology , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channels/genetics
12.
Phytomedicine ; 110: 154598, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603339

ABSTRACT

BACKGROUND: Oxidative stress is an inevitable process that occurs during life activities, and it can participate in the development of inflammation. Although great progress has been made according to research examining analgesic drugs and therapies, there remains a need to develop new analgesic drugs to fill certain gaps in both the experimental and clinical space. PURPOSE: This review reports the research and preclinical progress of this class of analgesics by summarizing known nuclear factor E-2-related factor-2 (Nrf2) pathway-modulating substances. STUDY DESIGN: We searched and reported experiments that intervene in the Nrf2 pathway and its various upstream and downstream molecules for analgesic therapy. METHODS: The medical literature database (PubMed) was searched for experimental studies examining the reduction of pain in animals through the Nrf2 pathway, the research methods were analyzed, and the pathways were classified and reported according to the pathway of these experimental interventions. RESULTS: Humans have identified a variety of substances that can fight pain by regulating the expression of Nrf2 and its upstream and downstream pathways. CONCLUSION: The Nrf2 pathway exerts anti-inflammatory activity by regulating oxidative stress, thereby playing a role in the fight against pain.


Subject(s)
Analgesics , NF-E2-Related Factor 2 , Animals , Humans , NF-E2-Related Factor 2/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Oxidative Stress , Inflammation/drug therapy , Pain/drug therapy
13.
Front Pharmacol ; 14: 1067665, 2023.
Article in English | MEDLINE | ID: mdl-37033662

ABSTRACT

Nav1.5 channel is crucial for the proliferation and migration of breast cancer cells. In this study, we investigated the anticancer effect of JZTX-14, a natural peptide considered an effective antagonist of Nav1.5. First, we successfully isolated and purified the 31 amino acid peptide JZTX-14 containing three pairs of disulfide bonds from spider venom and synthesised JZTX-14 by solid phase synthesis. We then predicted their physiochemical properties and structures in the peptide database. Further, we investigated the effects of natural and synthetic JZTX-14 on the proliferation and migration of MDA-MB-231 breast cancer cells via modulation of sodium current through the Nav1.5 channel. The results showed that both synthetic and natural JZTX-14 inhibited Nav1.5 currents, indicating the successful synthesis of JZTX-14. However, JZTX-14 did not affect MDA-MB-231 cell proliferation but inhibited its migration. Transcriptome analysis revealed that JZTX-14 downregulated S100A4 and FBXO2 and upregulated SERPINB2 in MDA-MB-231 cells. Western blot analysis demonstrated an increased level of the epithelial marker, E-cadherin, and decreased levels of the mesenchymal markers, N-cadherin and vimentin, and matrix metalloproteinase (MMP2), indicating the possible underlying mechanism of the inhibition of MDA-MB-231 cell migration by JZTX-14. This study provides a new target for inhibiting breast cancer metastasis and identifies a potent natural peptide for treating Triple-negative breast cancer.

14.
Toxins (Basel) ; 14(11)2022 11 02.
Article in English | MEDLINE | ID: mdl-36356003

ABSTRACT

Amphibian skin contains wound-healing peptides, antimicrobial peptides, and insulin-releasing peptides, which give their skin a strong regeneration ability to adapt to a complex and harsh living environment. In the current research, a novel wound-healing promoting peptide, PM-7, was identified from the skin secretions of Polypedates megacephalus, which has an amino acid sequence of FLNWRRILFLKVVR and shares no structural similarity with any peptides described before. It displays the activity of promoting wound healing in mice. Moreover, PM-7 exhibits the function of enhancing proliferation and migration in HUVEC and HSF cells by affecting the MAPK signaling pathway. Considering its favorable traits as a novel peptide that significantly promotes wound healing, PM-7 can be a potential candidate in the development of novel wound-repairing drugs.


Subject(s)
Peptides , Wound Healing , Mice , Animals , Peptides/chemistry , Anura/metabolism , Amino Acid Sequence , Signal Transduction
15.
Eur J Prev Cardiol ; 28(16): 1840-1849, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-34136913

ABSTRACT

AIMS: Prevention of cardiovascular outcomes is a goal of the management of patients with type 2 diabetes mellitus patients as important as lowering blood glucose levels. Among the various glucose-lowering agents, the effects of sodium-glucose cotransporter-2 inhibitors (SGLT-2Is) and dipeptidyl peptidase-4 inhibitors (DPP-4Is) on cardiovascular outcomes have become the focus of recent researches. METHODS AND RESULTS: A systematic search was performed through several online database. All studies that compared the effects of SGLT-2Is and DPP-4Is on cardiovascular outcomes and cardiometabolic risk factors were reviewed. A total of 30 studies were included. Compared with DPP-4Is, SGLT-2Is treatment reduced the risk of stroke [risk ratio (RR) = 0.80; 95% confidence interval (CI), 0.76-0.84], myocardial infarction (RR = 0.85; 95% CI, 0.81-0.89), heart failure (RR = 0.58; 95% CI, 0.54-0.62), cardiovascular mortality (RR = 0.55; 95% CI, 0.51-0.60), and all-cause mortality (RR = 0.60; 95% CI, 0.57-0.63). In addition, SGLT-2Is presented favourable effects on hemoglobinA1c, fasting plasma glucose, systolic blood pressure, and diastolic blood pressure. The differences in blood lipids were also compared. CONCLUSION: Sodium-glucose cotransporter-2 inhibitors are superior to DPP-4Is in terms of cardiovascular outcomes. Sodium-glucose cotransporter-2 inhibitors bring more benefits with respect to the cardiometabolic risk factors.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Glucose , Humans , Hypoglycemic Agents/adverse effects , Sodium , Sodium-Glucose Transporter 2 Inhibitors/adverse effects
16.
Biomedicines ; 10(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35625951

ABSTRACT

In the original publication, there were mistakes in Figure 3C, Figure 6B and Figure S2A,B as published [...].

17.
Article in English | MEDLINE | ID: mdl-34330791

ABSTRACT

A novel coronavirus first discovered in late December 2019 has spread to many countries around the world. An increasing number of asymptomatic patients have been reported and their ability to spread the virus has been proven. This brings major challenges to the control of the transmission. The discovery and control of asymptomatic patients with COVID-19 are the key issues in future epidemic prevention and recovery. In this narrative review, we summarise the existing knowledge about asymptomatic patients and put forward detection methods that are suitable for finding such patients. Besides, we compared the characteristics and transmissibility of asymptomatic patients in different populations in order to find the best screening, diagnosis and control measures for different populations. Comprehensive preventive advice is also provided to prevent the spread of infection from asymptomatic patients.

18.
Biomedicines ; 9(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34440138

ABSTRACT

Toxoplasmosis, caused by an obligate intracellular parasite Toxoplasma gondii, is one of the most prevalent zoonoses worldwide. Treatments for this disease by traditional drugs have shown numerous side effects, thus effective alternative anti-Toxoplasma strategies or drugs are urgently needed. In this study, a novel spider peptide, XYP1, was identified from the cDNA library of the venom gland of the spider Lycosa coelestis. Our results showed that XYP1 has potent anti-Toxoplasma activity in vitro and in vivo. Specifically, treatment with XYP1 significantly inhibited the viability, invasion and proliferation of tachyzoites with low cytotoxicity (IC50 = 38.79 µΜ) on human host cells, and increased the survival rate of mice acutely infected with T. gondii. Next, scanning electron microscopy, transmission electron microscopy and RNA sequencing were employed to further explore the functional mechanism of XYP1, and the results indicated that XYP1 causes membrane perforation, swelling and disruption of tachyzoites, which could be closely associated with differential expression of several membrane-associated proteins including HSP29. In conclusion, XYP1 may be a promising new drug candidate for the treatment of toxoplasmosis.

19.
BMJ Support Palliat Care ; 11(1): 45-52, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32958501

ABSTRACT

BACKGROUND: Because of the lack of vaccination, it is urgent to find effective antiviral agents for COVID-19 treatment. METHOD: Online databases were searched for articles published before or on 22 June 2020. Studies reporting the effectiveness and safety of antiviral agents for COVID-19 were analysed. RESULTS: A total of 42 studies were included in this analysis. Hydroxychloroquine (HCQ) was not associated with the incidence of death (risk ratio (RR)=1.08; 95% CI 0.81 to 1.44) and severe cases (RR=1.05; 95% CI 0.61 to 1.81). Patients treated with HCQ obtained few benefits with respect to the clearance of viral RNA and were more likely to have adverse reactions. HCQ treatment could shorten the body temperature recovery time (weighted mean difference = -1.04; 95% CI -1.64 to -0.45). Lopinavir/ritonavir (LPV/r) (RR=0.90; 95% CI 0.76 to 1.07) and Arbidol (RR=1.09; 95% CI 0.92 to 1.29) were not associated with the negative conversion rate. Integrative Chinese-Western medicine alleviated clinical symptoms and decreased the incidence of severe cases (RR=0.38; 95% CI 0.25 to 0.59). Remdesivir treatment reduced the 14-day mortality rate of patients with severe COVID-19 (RR=0.64; 95% CI 0.44 to 0.94). Convalescent plasma (CP) tended to increase the negative conversion rate (RR=2.47; 95% CI 1.70 to 3.57). CONCLUSION: HCQ, LPV/r and Arbidol bring little benefit in COVID-19 treatment. Integrative Chinese-Western medicine improved the clinical symptoms of patients with COVID-19. Remdesivir and CP might be the potential treatments for patients with severe COVID-19. However, large-scale clinical randomised trials are needed to validate our conclusions.


Subject(s)
Antirheumatic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/therapy , Immunologic Factors/therapeutic use , Medicine, Chinese Traditional , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Drug Combinations , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Immunoglobulins, Intravenous/therapeutic use , Indoles/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment , COVID-19 Serotherapy
20.
Front Med (Lausanne) ; 8: 702066, 2021.
Article in English | MEDLINE | ID: mdl-34295915

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to public concern worldwide. Although a variety of hypotheses about the hosts of SARS-CoV-2 have been proposed, an exact conclusion has not yet been reached. Initial clinical manifestations associated with COVID-19 are similar to those of other acute respiratory infections, leading to misdiagnoses and resulting in the outbreak at the early stage. SARS-CoV-2 is predominantly spread by droplet transmission and close contact; the possibilities of fecal-oral, vertical, and aerosol transmission have not yet been fully confirmed or rejected. Besides, COVID-19 cases have been reported within communities, households, and nosocomial settings through contact with confirmed COVID-19 patients or asymptomatic individuals. Environmental contamination is also a major driver for the COVID-19 pandemic. Considering the absence of specific treatment for COVID-19, it is urgent to decrease the risk of transmission and take preventive measures to control the spread of the virus. In this review, we summarize the latest available data on the potential hosts, entry receptors, clinical features, and risk factors of COVID-19 and transmission routes of SARS-CoV-2, and we present the data about development of vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL