Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur Radiol ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38276982

ABSTRACT

OBJECTIVES: To preoperatively evaluate the human epidermal growth factor 2 (HER2) status in breast cancer using mammographic radiomics features and clinical characteristics on a multi-vendor and multi-center basis. METHODS: This multi-center study included a cohort of 1512 Chinese female with invasive ductal carcinoma of no special type (IDC-NST) from two different hospitals and five devices (1332 from Institution A, used for training and testing the models, and 180 women from Institution B, as the external validation cohort). The Gradient Boosting Machine (GBM) was employed to establish radiomics and multiomics models. Model efficacy was evaluated by the area under the curve (AUC). RESULTS: The number of HER2-positive patients in the training, testing, and external validation cohort were 245(26.3%), 105 (26.3.8%), and 51(28.3%), respectively, with no statistical differences among the three cohorts (p = 0.842, chi-square test). The radiomics model, based solely on the radiomics features, achieved an AUC of 0.814 (95% CI, 0.784-0.844) in the training cohort, 0.776 (95% CI, 0.727-0.825) in the testing cohort, and 0.702 (95% CI, 0.614-0.790) in the external validation cohort. The multiomics model, incorporated radiomics features with clinical characteristics, consistently outperformed the radiomics model with AUC values of 0.838 (95% CI, 0.810-0.866) in the training cohort, 0.788 (95% CI, 0.741-0.835) in the testing cohort, and 0.722 (95% CI, 0.637-0.811) in the external validation cohort. CONCLUSIONS: Our study demonstrates that a model based on radiomics features and clinical characteristics has the potential to accurately predict HER2 status of breast cancer patients across multiple devices and centers. CLINICAL RELEVANCE STATEMENT: By predicting the HER2 status of breast cancer reliably, the presented model built upon radiomics features and clinical characteristics on a multi-vendor and multi-center basis can help in bolstering the model's applicability and generalizability in real-world clinical scenarios. KEY POINTS: • The mammographic presentation of breast cancer is closely associated with the status of human epidermal growth factor receptor 2 (HER2). • The radiomics model, based solely on radiomics features, exhibits sub-optimal performance in the external validation cohort. • By combining radiomics features and clinical characteristics, the multiomics model can improve the prediction ability in external data.

2.
Neuroradiology ; 66(6): 897-906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358511

ABSTRACT

PURPOSE: Despite mounting evidence indicating that aquaporin-4 antibody-positive optic neuritis (AQP4-ON) presents a less favorable prognosis than other types of optic neuritis, there exists substantial heterogeneity in the prognostic outcomes within the AQP4-ON cohort. Considering the persistent debate over the role of MRI in assessing the prognosis of optic neuritis, we aim to investigate the correlation between the MRI appearance and long-term visual prognosis in AQP4-ON patients. METHODS: We retrospectively reviewed the ophthalmological and imaging data of AQP4-ON patients admitted to our Neuro-ophthalmology Department from January 2015 to March 2018, with consecutive follow-up visits for a minimum of 3 years. RESULTS: A total of 51 AQP4-ON patients (59 eyes) meeting the criteria were enrolled in this research. After assessing the initial orbital MR images of each patient at the first onset, we observed the involvement of the canalicular segment (p < 0.001), intracranial segment (p = 0.004), optic chiasm (p = 0.009), and the presence of LEON (p = 0.002) were significantly different between recovery group and impairment group. For quantitative measurement, the length of the lesions is significantly higher in the impairment group (20.1 ± 9.3 mm) than in the recovery group (12.5 ± 5.3 mm) (p = 0.001). CONCLUSION: AQP4-ON patients with involvement of canalicular, intracranial segment and optic chiasm of the optic nerve, and the longer range of lesions threaten worse vision prognoses. Timely MR examination during the initial acute phase can not only exclude the intracranial or orbital mass lesions but also indicate visual prognosis in the long term.


Subject(s)
Aquaporin 4 , Magnetic Resonance Imaging , Optic Neuritis , Humans , Optic Neuritis/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Aquaporin 4/immunology , Prognosis , Retrospective Studies , Adult , Middle Aged , Autoantibodies/blood , Aged , Adolescent , Visual Acuity
3.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38086612

ABSTRACT

AIMS: This research aimed to investigate the inhibitory effects of Pudilan mouthwash (PDL) on Streptococcus mutans (S. mutans) biofilms and identify its chemical components. METHODS AND RESULTS: The impacts of 100% concentrated PDL on S. mutans biofilm were detected by colony-forming unit (CFU) assays, crystal violet staining, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and quantitative real-time PCR (qRT‒PCR). The biocompatibility with human gingival fibroblasts (HGFs) was evaluated by Cell-Counting-Kit-8 (CCK-8) assay. And chemical components were identified by UPLC-HRMS. PBS and 0.12% chlorhexidine were used as negative and positive controls, respectively. Results indicate early 8-h S. mutans biofilms are sensitive to PDL. Additionally, it leads to a decrease in bacterial activities and dextran-dependent aggregation in 24-h S. mutans biofilms. PDL significantly downregulates the gene expression of gtfB/C/D and smc. And 114 components are identified. CONCLUSIONS: PDL has an inhibitory effect on S. mutans and favorable biocompatibility. It has potential to be exploited as a novel anti-biofilm agent.


Subject(s)
Mouthwashes , Streptococcus mutans , Humans , Mouthwashes/pharmacology , Dextrans/metabolism , Dextrans/pharmacology , Chlorhexidine/pharmacology , Biofilms
4.
Environ Microbiol ; 24(3): 1395-1410, 2022 03.
Article in English | MEDLINE | ID: mdl-35064734

ABSTRACT

Streptococcus mutans (S. mutans) is the principal etiological agent in cariogenesis because of its ability to metabolize sucrose into extracellular polysaccharides (EPS). The response regulators GcrR and VicR could regulate EPS metabolism, but with opposing regulatory functions. However, the cooperative interactions between gcrR and vicR regulating sucrose-selective EPS metabolism have not been fully elucidated. First, we constructed several dual-mutant strains (vicR + gcrR+, vicR and gcrR overexpression; vicR + gcrR-, vicR overexpression and gcrR deficient; ASvicRgcrR+, vicR low-expression and gcrR overexpression; ASvicRgcrR-, vicR low-expression and gcrR deficient) to clarify gtfB/gtfC expression levels were modulated by gcrR regardless of the vicR gene expression levels. Next, we found gcrR deletion mutant (SmugcrR) displayed obvious auto-aggregation and bacterial cells were densely packed in enriched EPS induced by sucrose. In the contrast, SmugcrR biofilm showed very little carbohydrate-dependent aggregation in the absence of sucrose. The presence of sucrose amplifies the negative regulation of gcrR acting as a 'switch-off'. After sucrose induction, dexA gene expression was significantly enhanced in gcrR overexpression mutant (SmugcrR+). Furthermore, GcrR was shown to directly bind to the promoter region of the dexA gene. Taken together, our results reveal that GcrR interacts with VicR to block EPS biosynthesis via polysaccharide digestion by DexA, and that this process is induced in a sucrose-selective manner. Hence, targeting GcrR is a potential strategy for the management of dental caries.


Subject(s)
Dental Caries , Streptococcus mutans , Bacterial Proteins/metabolism , Biofilms , Gene Expression Regulation, Bacterial , Humans , Streptococcus mutans/genetics , Sucrose/metabolism
5.
Caries Res ; 55(5): 534-545, 2021.
Article in English | MEDLINE | ID: mdl-34348276

ABSTRACT

Streptococcus mutans is known as the crucial pathogen of human dental caries, owing to its contribution to the biofilm development via the capacity of synthesizing exopolysaccharide (EPS), which mainly compose of α-glycosidic bond and ß-glycosidic bond. ß-glycosidic bond is less flexible than α-glycosidic bond because of differences between their configurational properties. Previous studies have shown that the rnc gene is implicated in the EPS formation and the cariogenicity of S. mutans. However, the effects of rnc on the microstructure of EPS have been not well-understood yet. Here, we further investigated how the rnc gene worked to modulate microstructural properties of the extracellular polysaccharide of S. mutans using glycomics methods. The gas chromatography-mass spectrometer showed that the proportion of glucose was decreased in water-soluble EPS and galactose was absent in water-insoluble EPS from the S. mutans rnc-deficient strain (Smurnc), compared with the isogenic wild-type strain (UA159). The composition of functional groups and the displacement of hydrogen bond were analyzed by infrared radiation and 1H nuclear magnetic resonance, respectively. In addition, phenotypic modulation of the biofilm matrix was assessed by microscopy. We found that the EPS of UA159 and the rnc overexpression strain (Smurnc+) mainly consisted of ß-glycosidic bonds. Conversely, the EPS of Smurnc were made up of mostly α-glycosidic bonds, leading to the attenuation of biofilm biomass and bacterial adhesion. Furthermore, the existence of ß-glycosidic bond was verified by enzyme digestion. Collectively, the rnc gene modulates the conversion of ß-glycosidic bonds, which may play important roles in regulating the micromolecule structure of the EPS matrix, thus affecting the characteristics of S. mutans biofilm. These data illustrate that ß-glycosidic bonds mediated by rnc may be potential targets for the prevention and treatment of dental caries.


Subject(s)
Dental Caries , Streptococcus mutans , Bacterial Adhesion , Biofilms , Humans , Monosaccharides , Streptococcus mutans/genetics
6.
Angew Chem Int Ed Engl ; 60(8): 3856-3857, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33314520

ABSTRACT

In their Correspondence, Sergey V. Krivovichev and Luca Bindi argue that the novel excellent nonlinear optical material antimony pyrophosphate, K2 Sb(P2 O7 )F, reported in our Research Article published in this journal belongs to the fresnoite Ba2 [TiO(Si2 O7 )] group and its structure is not novel in terms of either topology or local coordination geometry around Sb3+ cations. We clarify that the statements regarding structural features of our original paper are valid in context.

7.
Angew Chem Int Ed Engl ; 59(47): 21151-21156, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32745331

ABSTRACT

Discovering new functional genes, designing perfect crystal structures, and developing high-performance materials are the goals being pursued by scientists. Herein, the first antimony pyrophosphate, K2 Sb(P2 O7 )F, possessing an optimal layered structure, is reported, where the perfect structural arrangement induces excellent optical properties. K2 Sb(P2 O7 )F not only displays a sharply enhanced birefringence (0.157@546 nm) compared to the existing phosphate optical materials, but also exhibits a strong second-harmonic generation response (4.0×KDP). Remarkably, a new bifunctional gene, the square-pyramidal SbO4 F group, was discovered, and a unique two-dimensional arrangement of Cairo pentagonal tiling units was observed in inorganic compounds for the first time.


Subject(s)
Antimony/chemistry , Diphosphates/chemistry , Fluorine/chemistry , Potassium/chemistry , Crystallography, X-Ray , Models, Molecular , Optical Phenomena , Spectrophotometry, Infrared
8.
BMC Cancer ; 17(1): 673, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28978307

ABSTRACT

BACKGROUND: Our previous study showed FOXM1 expression was significantly up-regulated in cervical cancer, and was associated with poor prognosis. To clarify miRNAs-FOXM1 modulation pathways, in this study, we investigated the relationships between miR-216b and FOXM1 and the role of miR-216b in cell proliferation and prognosis of cervical cancer patients. METHODS: Western blotting and qPCR were used to determine expression of FOXM1, cell cycle related factors and miR-216b level. MiR-216b overexpression and inhibited cell models were constructed, and siRNA was used for FOXM1 silencing. Cell proliferation was analyzed by MTT and colony formation assay. Dual luciferase reporter assay system was used to clarify the relationships between miR-216b and FOXM1. Kaplan-Meier survival analysis was used to evaluate prognosis. RESULTS: MiR-216b was down-regulated in cervical cancer cells and tissues, and its ectopic expression could decrease cell proliferation. Western blotting analysis showed miR-216b can inhibit cell proliferation by regulating FOXM1-related cell cycle factors, suppressing cyclinD1, c-myc, LEF1 and p-Rb and enhancing p21 expression. Repressing of miR-216b stimulated cervical cancer cell proliferation, whereas silencing FOXM1 expression could reverse this effect. Western blotting and luciferase assay results proved FOXM1 is a direct target of miR-216b. Survival analysis showed higher level of miR-216b was associated with better prognosis in cervical cancer patients. CONCLUSIONS: FOXM1 expression could be suppressed by miR-216b via direct binding to FOXM1 3'-UTR and miR-216b could inhibit cell proliferation by regulating FOXM1 related Wnt/ß-catenin signal pathway. MiR-216b level is related to prognosis in cervical cancer patients and may serve as a potential prognostic marker.


Subject(s)
Biomarkers, Tumor/genetics , Forkhead Box Protein M1/genetics , MicroRNAs/genetics , Uterine Cervical Neoplasms/genetics , Aged , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Middle Aged , Neoplasm Proteins , Neoplasm Staging , Prognosis , Uterine Cervical Neoplasms/pathology
9.
Gynecol Oncol ; 143(3): 655-663, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27726922

ABSTRACT

OBJECTIVE: Ovarian cancer is one of the most lethal gynecologic malignancies worldwide and with poor prognosis and survival rate in women. Identifying sensitive and specific molecular in carcinogenesis may improve diagnostic and therapeutic strategies for this malignancy and achieve a better clinical outcome. METHODS: miR-760 expression in ovarian cancer cell lines and patient tissues were determined using Real-time PCR. 145 human ovarian cancer tissue samples were analyzed by RT-PCR to investigate the association between miR-760expression and the clinicopathological characteristics of ovarian cancer patients. Functional assays, such as MTT, anchorage-independent growth, colony formation and BRDU assay were used to determine the oncogenic role of miR-760 in human ovarian cancer progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of miR-760 promotes proliferation in ovarian cancer cells. RESULT: The expression of miR-760 was markedly upregulated in ovarian cancer cell lines and tissues, and high miR-760 expression was associated with an aggressive phenotype and poor prognosis with ovarian cancer patients. Upregulation of miR-760 promoted, whereas downregulation of miR-760 inhibited the proliferation of ovarian cancer cells in vitro. Additionally, we identified PHLPP2 as a direct target of miR-760, and silencing the expression of PHLPP2 is the essential biological function of miR-760 during ovarian cancer cell proliferation. Finally, we showed a significant correlation between miR-760 and PHLPP2 expression in ovarian cancer tissues. CONCLUSION: Our findings suggest that miR-760 represents a potential onco-miR and participates in ovarian cancer carcinogenesis, which highlight its potential as a target for ovarian cancer therapy.


Subject(s)
Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Ovarian Neoplasms/genetics , Phosphoprotein Phosphatases/metabolism , Blotting, Western , Carcinogenesis/genetics , Cell Line, Tumor , Down-Regulation , Female , HEK293 Cells , Humans , In Vitro Techniques , Ovarian Neoplasms/metabolism , Real-Time Polymerase Chain Reaction , Up-Regulation
10.
Biochem J ; 464(2): 281-9, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25222560

ABSTRACT

Insulin resistance is a major hallmark of metabolic syndromes, including Type 2 diabetes. Although numerous functions of SGK1 (serum- and glucocorticoid-regulated kinase 1) have been identified, a direct effect of SGK1 on insulin sensitivity has not been previously reported. In the present study, we generated liver-specific SGK1-knockout mice and found that these mice developed glucose intolerance and insulin resistance. We also found that insulin signalling is enhanced or impaired in Hep1-6 cells infected with adenoviruses expressing SGK1 (Ad-SGK1) or shRNA directed against the coding region of SGK1 (Ad-shSGK1) respectively. In addition, we determined that SGK1 inhibits ERK1/2 (extracellular-signal-regulated kinase 1/2) activity in liver and Ad-shERK1/2-mediated inhibition of ERK1/2 reverses the attenuated insulin sensitivity in Ad-shSGK1 mice. Finally, we found that SGK1 functions are compromised under insulin-resistant conditions and overexpression of SGK1 by Ad-SGK1 significantly ameliorates insulin resistance in both glucosamine-treated HepG2 cells and livers of db/db mice, a genetic model of insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Immediate-Early Proteins/metabolism , Insulin Resistance , Insulin/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/pathology , Glucose Intolerance , Hep G2 Cells , Humans , Immediate-Early Proteins/chemistry , Insulin/genetics , Liver/metabolism , Liver/pathology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Signal Transduction/genetics
11.
J Adv Res ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740260

ABSTRACT

INTRODUCTION: The N-terminal domain of angiopoietin-like protein 3 (ANGPTL3) inhibits lipoprotein lipase activity. Its C-terminal fibrinogen-like (FBN) domain is a ligand of macrophage integrin αvß3. OBJECTIVES: ANGPTL3 might home to plaque where it directly regulates macrophage function via integrin αvß3 for atherosclerosis progression. METHODS: Ldlr-/- mice on a high-fat diet and ApoE-/- mice on a chow diet were received adeno-associated virus (AAV)-mediated Angptl3 gene transfer and followed up for 12 weeks. ApoE-/- mice were injected AAV containing FLAG-tagged Angptl3 cDNA for tracing. Atherosclerotic features were compared between Angptl3-/-ApoE-/- mice and ApoE-/- littermates. THP-1 cells were exposed to 0 or 50 µg/ml ANGPTL3 FBN domain for 24 h to evaluate Toll-like receptor (TLR)4 expression using western blot analysis and circulating cytokine and chemokine profiles by the MILLIPLEX MAP assay. Phospho-proteomic profile was established in ANGPTL3-treated macrophages. Integrin ß3 deficient THP-1 cells were obtained by sgRNAs targeting RGD sequence using Lentivirus-Cas9 system. RESULTS: Angptl3 overexpression increased atherosclerotic progression and CD68+ macrophages in plaque (p < 0.05 for all). By immunostaining, FLAG+ cells were identified in plaque of gene transferred ApoE-/- mice. Fluorescent immunostaining detected co-localisation of Angptl3 and CD68 in plaque macrophages. Phospho-proteomic analysis revealed that Angptl3 induced phosphorylation of proteins that were involved in the IL-17 signalling pathway in THP-1 cells. In vitro, ANGPTL3 treatment increased the production of interleukin (IL)-1ß and tumour necrosis factor-α in THP-1 cells (p < 0.05 for both). Exposure of ANGPTL3 to THP-1 cells induced Akt phosphorylation which was weakened in integrin ß3 deficient ones. ANGPTL3 elevated TLR4 expression via Akt phosphorylation. In response to lipopolysaccharide, nuclear factor-κB activity was 2.2-fold higher in THP-1 cells pre-treated with ANGPTL3 than in untreated cells (p < 0.05). CONCLUSIONS: Targeting ANGPTL3 could yield a dual benefit of lowering lipid levels in the blood and suppressing macrophage activation in plaque.

12.
Nat Commun ; 15(1): 2384, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493144

ABSTRACT

MALAT1, one of the few highly conserved nuclear long noncoding RNAs (lncRNAs), is abundantly expressed in normal tissues. Previously, targeted inactivation and genetic rescue experiments identified MALAT1 as a suppressor of breast cancer lung metastasis. On the other hand, Malat1-knockout mice are viable and develop normally. On a quest to discover the fundamental roles of MALAT1 in physiological and pathological processes, we find that this lncRNA is downregulated during osteoclastogenesis in humans and mice. Remarkably, Malat1 deficiency in mice promotes osteoporosis and bone metastasis of melanoma and mammary tumor cells, which can be rescued by genetic add-back of Malat1. Mechanistically, Malat1 binds to Tead3 protein, a macrophage-osteoclast-specific Tead family member, blocking Tead3 from binding and activating Nfatc1, a master regulator of osteoclastogenesis, which results in the inhibition of Nfatc1-mediated gene transcription and osteoclast differentiation. Notably, single-cell transcriptome analysis of clinical bone samples reveals that reduced MALAT1 expression in pre-osteoclasts and osteoclasts is associated with osteoporosis and metastatic bone lesions. Altogether, these findings identify Malat1 as a lncRNA that protects against osteoporosis and bone metastasis.


Subject(s)
Osteoporosis , RNA, Long Noncoding , Animals , Humans , Mice , Macrophages/metabolism , Osteoclasts/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , RNA, Long Noncoding/metabolism
13.
Cell Death Differ ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871948

ABSTRACT

Hepatic stellate cells (HSCs) secrete extracellular matrix for collagen deposition, contributing to liver fibrosis. Ferroptosis is a novel type of programmed cell death induced by iron overload-dependent lipid peroxidation. Regulation of ferroptosis in hepatic stellate cells (HSCs) may have therapeutic potential for liver fibrosis. Here, we found that Maf bZIP transcription factor G (MafG) was upregulated in human and murine liver fibrosis. Interestingly, MafG knockdown increased HSCs ferroptosis, while MafG overexpression conferred resistance of HSCs to ferroptosis. Mechanistically, MafG physically interacted with non-muscle myosin heavy chain IIa (MYH9) to transcriptionally activate lipocalin 2 (LCN2) expression, a known suppressor for ferroptosis. Site-directed mutations of MARE motif blocked the binding of MafG to LCN2 promoter. Re-expression of LCN2 in MafG knockdown HSCs restored resistance to ferroptosis. In bile duct ligation (BDL)-induced mice model, we found that treatment with erastin alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific knowdown MafG based on adeno-associated virus 6 (AAV-6) improved erastin-induced HSC ferroptosis and alleviation of liver fibrosis. Taken together, MafG inhibited HSCs ferroptosis to promote liver fibrosis through transcriptionally activating LCN2 expression. These results suggest that MafG/MYH9-LCN2 signaling pathway could be a novel targets for the treatment of liver fibrosis.

14.
Biomark Res ; 11(1): 17, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36750911

ABSTRACT

The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.

15.
Arch Oral Biol ; 147: 105610, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36603516

ABSTRACT

OBJECTIVE: This study aimed to investigate the antibiofilm and anticariogenic effects of honokiol, a traditional Chinese medicine, on the cariogenic bacterium Streptococcus mutans (S. mutans). DESIGN: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of honokiol on S. mutans UA159 were measured. Then, S. mutans were treated with honokiol at concentrations of 1/2 MIC and 1/4 MIC. Extracellular polysaccharide (EPS) synthesis was assessed with confocal laser scanning microscopy (CLSM) and the anthrone-sulfuric method. Crystal violet staining and scanning electron microscopy (SEM) were used to demonstrate the characteristics and morphology of S. mutans biofilms. Colony-forming unit (CFU) assay was performed to observe the antibacterial effect of honokiol. Lactic acid production of 24-h biofilms was measured by the lactic acid assay. The expression level of caries-related genes (gtfB/C/D, comD/E and ldh) was identified by quantitative real-time PCR (qRTPCR) to explore the relevant mechanism. And the cytotoxic effect on human gingival fibroblasts (HGFs) was evaluated by the Cell Counting Kit-8 (CCK-8) assay. RESULTS: The MIC and MBC of honokiol on S. mutans were 30 µg/mL and 60 µg/mL, respectively. Honokiol inhibited biofilm formation, EPS synthesis and lactic acid production. It also decreased the expression of glucosyltransferases (Gtfs) and quorum sensing (QS) system encoding genes. Moreover, honokiol showed favorable biocompatibility with HGFs. CONCLUSIONS: Honokiol has an inhibitory effect on S. mutans and favorable biocompatibility, with application potential as a novel anticaries agent.


Subject(s)
Dental Caries , Lignans , Humans , Streptococcus mutans , Lignans/pharmacology , Dental Caries/prevention & control , Dental Caries/microbiology , Biofilms , Lactic Acid
16.
Bioeng Transl Med ; 8(3): e10469, 2023 May.
Article in English | MEDLINE | ID: mdl-37206231

ABSTRACT

Poststent restenosis is caused by insufficient endothelialization and is one of the most serious clinical complications of stenting. We observed a rapid endothelialization rate and increased fibrin deposition on the surfaces of the corroded iron stents. Thus, we hypothesized that corroded iron stents would promote endothelialization by increasing fibrin deposition on rough surfaces. To verify this hypothesis, we conducted an arteriovenous shunt experiment to analyze fibrin deposition in the corroded iron stents. We implanted a corroded iron stent in both the carotid and iliac artery bifurcations to elucidate the effects of fibrin deposition on endothelialization. Co-culture experiments were conducted under dynamic flow conditions to explore the relationship between fibrin deposition and rapid endothelialization. Our findings indicate that, from the generation of corrosion pits, the surface of the corroded iron stent was rough, and numerous fibrils were deposited in the corroded iron stent. Fibrin deposition in corroded iron stents facilitates endothelial cell adhesion and proliferation, which, in turn, promotes endothelialization after stenting. Our study is the first to elucidate the role of iron stent corrosion in endothelialization, pointing to a new direction for preventing clinical complications caused by insufficient endothelialization.

17.
Life Sci ; 312: 121266, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36473542

ABSTRACT

AIMS: To explore the methylation status, function, and underlying mechanism of the imprinted gene Neuronatin (NNAT) in hepatocellular carcinoma (HCC) progression. MAIN METHODS: Immunohistochemistry (IHC) was performed to evaluate the expression of NNAT in HCC samples. Bisulfite genomic sequencing PCR (BSP) was applied to examine the methylation status of the NNAT promoter. In addition, colony formation, 5-Ethynyl-20-deoxyuridine (EdU) assays and subcutaneous xenograft nude models were used to explore the roles of NNAT in HCC cell proliferation. Furthermore, RNA-seq and phospho-specific protein microarray assays were conducted to illustrate the underlying mechanism by which NNAT regulates HCC progression. KEY FINDINGS: NNAT was obviously downregulated in HCC tissues, and its expression level was closely associated with tumor growth and patient prognosis. The downregulation of NNAT in HCC was induced by hypermethylation of CpG islands in the promoter region, and hypermethylation was correlated with overall survival of HCC. Moreover, the enforced expression of NNAT significantly inhibited HCC cell proliferation in vitro and in vivo. Transcriptome analysis showed that the alteration of NNAT expression was mainly related to dysregulation of the PI3K-Akt signaling pathway. Finally, phospho-specific antibody microarray detection further revealed that overexpressed NNAT can increase the phosphorylation levels of LKB1, Met, and elF4E and decrease the phosphorylation levels of PTEN, which are all involved in the PI3K-Akt signaling pathway. SIGNIFICANCE: Our research provides new insights into the epigenetic regulation of imprinted genes in tumorigenesis and implies that the imprinted gene NNAT may act as a prognostic biomarker and tumor suppressor in HCC.


Subject(s)
Carcinoma, Hepatocellular , DNA Methylation , Gene Silencing , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA Methylation/genetics , DNA Methylation/physiology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice, Nude , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Gene Silencing/physiology , Disease Models, Animal
18.
Res Sq ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993303

ABSTRACT

MALAT1, one of the few highly conserved nuclear long noncoding RNAs (IncRNAs), is abundantly expressed in normal tissues. Previously, targeted inactivation and genetic rescue experiments identified MALAT1 as a suppressor of breast cancer lung metastasis. On the other hand, Malat1-knockout mice are viable and develop normally. On a quest to discover new roles of MALAT1 in physiological and pathological processes, we found that this lncRNA is downregulated during osteoclastogenesis in humans and mice. Notably, Malat1 deficiency in mice promotes osteoporosis and bone metastasis, which can be rescued by genetic add-back of Malat1. Mechanistically, Malat1 binds to Tead3 protein, a macrophage-osteoclast-specific Tead family member, blocking Tead3 from binding and activating Nfatc1, a master regulator of osteoclastogenesis, which results in the inhibition of Nfatc1-mediated gene transcription and osteoclast differentiation. Altogether, these findings identify Malat1 as a lncRNA that suppresses osteoporosis and bone metastasis.

19.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993315

ABSTRACT

The molecular links between tissue repair and tumorigenesis remain elusive. Here, we report that loss of the liver tumor suppressor Lifr in mouse hepatocytes impairs the recruitment and activity of reparative neutrophils, resulting in the inhibition of liver regeneration after partial hepatectomy or toxic injuries. On the other hand, overexpression of LIFR promotes liver repair and regeneration after injury. Interestingly, LIFR deficiency or overexpression does not affect hepatocyte proliferation ex vivo or in vitro . In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of the neutrophil chemoattractant CXCL1 (which binds CXCR2 to recruit neutrophils) and cholesterol in a STAT3-dependent manner. Cholesterol, in turn, acts on the recruited neutrophils to secrete hepatocyte growth factor (HGF) to accelerate hepatocyte proliferation and regeneration. Altogether, our findings reveal a LIFR-STAT3- CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-HGF axis that mediate hepatic damage- induced crosstalk between hepatocytes and neutrophils to repair and regenerate the liver.

20.
PeerJ ; 11: e16029, 2023.
Article in English | MEDLINE | ID: mdl-37692113

ABSTRACT

Background: Chronic unpredictable mild stress (CUMS) has been shown to exacerbate atherosclerosis, but the underlying mechanism remains unknown. Adipose tissue is an energy storage organ and the largest endocrine organ in the human body, playing a key role in the development of cardiovascular disease. In this research, it was hypothesized that CUMS may exacerbate the development of atherosclerosis by inducing the hypertrophy and dysfunction of white adipocytes. Methods: The CUMS-induced atherosclerosis model was developed in Western diet-fed apolipoprotein E (ApoE)-/- mice. White adipose tissue (WAT), serum, aortic root, and the brachiocephalic trunk were collected and tested after 12 weeks of CUMS development. The mouse model of CUMS was evaluated for depression-like behavior using the open field test (OFT) and the elevated plus maze (EPM) test. Enzyme-linked immunosorbent assay (ELISA) was conducted to detect serum noradrenaline and urine adrenaline protein levels. Serological assays were used to detect serum low-density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TC), and free fatty acid (FFA) concentrations. Hematoxylin and eosin (H&E) staining and oil red O were used to detect atherosclerotic plaque area, lipid deposition, and adipocyte size. The mRNA levels of genes related to aberrant adipose tissue function were determined using real-time PCR. Immunofluorescence assay and western blotting were conducted to examine the expression of proteins in the adipose tissue samples. Results: CUMS aggravated vascular atherosclerotic lesions in ApoE-/- mice. It decreased body weight while increasing the percentage of WAT. The serological results indicated that the concentration of HDL decreased in CUMS mice. Notably, adipocyte hypertrophy increased, whereas the mRNA levels of Pparg and its target genes (Slc2a4 (encodes for GLUT4), Adipoq, and Plin1) decreased. Further investigation revealed that CUMS increased subcutaneous inguinal WAT (iWAT) lipid synthesis and adipocyte inflammation while decreasing lipid hydrolysis and the expression of HDL-associated protein ApoA-I. Moreover, CUMS aggravated insulin resistance in mice and inhibited the insulin pathway in iWAT. Conclusions: These findings indicated that CUMS induces adipose tissue dysfunction via a mechanism that leads to dyslipidemia, increased inflammation, and insulin resistance in the body, thereby exacerbating atherosclerosis. Notably, CUMS that is involved in decreasing the expression of HDL-associated proteins in adipose tissue may be a crucial link between adipose hypertrophy and advanced atherosclerosis. This study reveals a novel mechanism via which CUMS exacerbates atherosclerosis from the novel perspective of abnormal adipose function and identifies a novel potential therapeutic target for this disease.


Subject(s)
Atherosclerosis , Insulin Resistance , Animals , Mice , Adipocytes, White , Adipose Tissue , Atherosclerosis/etiology , Obesity , Mice, Knockout, ApoE , Stress, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL