Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
PLoS Med ; 17(5): e1003084, 2020 05.
Article in English | MEDLINE | ID: mdl-32407380

ABSTRACT

BACKGROUND: The radical cure of Plasmodium vivax and P. ovale requires treatment with primaquine or tafenoquine to clear dormant liver stages. Either drug can induce haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, necessitating screening. The reference diagnostic method for G6PD activity is ultraviolet (UV) spectrophotometry; however, a universal G6PD activity threshold above which these drugs can be safely administered is not yet defined. Our study aimed to quantify assay-based variation in G6PD spectrophotometry and to explore the diagnostic implications of applying a universal threshold. METHODS AND FINDINGS: Individual-level data were pooled from studies that used G6PD spectrophotometry. Studies were identified via PubMed search (25 April 2018) and unpublished contributions from contacted authors (PROSPERO: CRD42019121414). Studies were excluded if they assessed only individuals with known haematological conditions, were family studies, or had insufficient details. Studies of malaria patients were included but analysed separately. Included studies were assessed for risk of bias using an adapted form of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Repeatability and intra- and interlaboratory variability in G6PD activity measurements were compared between studies and pooled across the dataset. A universal threshold for G6PD deficiency was derived, and its diagnostic performance was compared to site-specific thresholds. Study participants (n = 15,811) were aged between 0 and 86 years, and 44.4% (7,083) were women. Median (range) activity of G6PD normal (G6PDn) control samples was 10.0 U/g Hb (6.3-14.0) for the Trinity assay and 8.3 U/g Hb (6.8-15.6) for the Randox assay. G6PD activity distributions varied significantly between studies. For the 13 studies that used the Trinity assay, the adjusted male median (AMM; a standardised metric of 100% G6PD activity) varied from 5.7 to 12.6 U/g Hb (p < 0.001). Assay precision varied between laboratories, as assessed by variance in control measurements (from 0.1 to 1.5 U/g Hb; p < 0.001) and study-wise mean coefficient of variation (CV) of replicate measures (from 1.6% to 14.9%; p < 0.001). A universal threshold of 100% G6PD activity was defined as 9.4 U/g Hb, yielding diagnostic thresholds of 6.6 U/g Hb (70% activity) and 2.8 U/g Hb (30% activity). These thresholds diagnosed individuals with less than 30% G6PD activity with study-wise sensitivity from 89% (95% CI: 81%-94%) to 100% (95% CI: 96%-100%) and specificity from 96% (95% CI: 89%-99%) to 100% (100%-100%). However, when considering intermediate deficiency (<70% G6PD activity), sensitivity fell to a minimum of 64% (95% CI: 52%-75%) and specificity to 35% (95% CI: 24%-46%). Our ability to identify underlying factors associated with study-level heterogeneity was limited by the lack of availability of covariate data and diverse study contexts and methodologies. CONCLUSIONS: Our findings indicate that there is substantial variation in G6PD measurements by spectrophotometry between sites. This is likely due to variability in laboratory methods, with possible contribution of unmeasured population factors. While an assay-specific, universal quantitative threshold offers robust diagnosis at the 30% level, inter-study variability impedes performance of universal thresholds at the 70% level. Caution is advised in comparing findings based on absolute G6PD activity measurements across studies. Novel handheld quantitative G6PD diagnostics may allow greater standardisation in the future.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/metabolism , Glucosephosphate Dehydrogenase/metabolism , Spectrophotometry , Adolescent , Adult , Aged , Aged, 80 and over , Antimalarials/therapeutic use , Child , Child, Preschool , Female , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Humans , Infant , Infant, Newborn , Malaria/epidemiology , Male , Middle Aged , Young Adult
3.
Malar J ; 15(1): 528, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27809837

ABSTRACT

BACKGROUND: Plasmodium falciparum resistance to artemisinin emerged in the Greater Mekong Sub-region has been associated with mutations in the propeller domain of the kelch gene Pfk13. METHODS: Here the polymorphisms in Pvk12 gene, the orthologue of Pfk13 in Plasmodium vivax, were determined by PCR and sequencing in 262 clinical isolates collected in recent years (2012-2015) from the China-Myanmar border area. RESULTS: Sequencing of full-length Pvk12 genes from these isolates identified three synonymous mutations (N172N, S360S, S697S) and one non-synonymous mutation M124I, all of which were at very low prevalence (2.0-3.1%). Moreover, these mutations were non-overlapping between the two study sites on both sides of the border. Molecular evolutionary analysis detected signature of purifying selection on Pvk12. CONCLUSIONS: There is no direct evidence that Pvk12 is involved in artemisinin resistance in P. vivax, but it remains a potential candidate requiring further investigation. Continuous monitoring of potential drug resistance in this parasite is needed in order to facilitate the regional malaria elimination campaign.


Subject(s)
Drug Resistance , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Polymorphism, Genetic , Protozoan Proteins/genetics , Antimalarials/pharmacology , Artemisinins/pharmacology , China , Humans , Lactones/pharmacology , Mutation , Myanmar , Plasmodium vivax/drug effects , Sequence Analysis, DNA
4.
Front Genet ; 15: 1374263, 2024.
Article in English | MEDLINE | ID: mdl-38831774

ABSTRACT

Rana hanluica: an endemic amphibian of China, is found in the hills and mountains south of the Yangtze River. In this comprehensive study, we collected 162 samples from 14 different localities to delve into the genetic diversity of Rana hanluica using mitochondrial Cytb and nuclear RAG2 as genetic markers. Our findings reveal that the Nanling Mountains, specifically regions like Jiuyi Shan, Jinggang Shan, Mang Shan, and Qiyun Shan, are genetic hotspots harboring remarkable diversity. The research results also indicate that there is gene flow among the various populations of the species, and no distinct population structure has formed, which may be due to migration. Moreover, populations in some regions, as well as the overall population, show signs of a possible genetic bottleneck, which we speculate may have been caused by climate change. However, given the exploratory nature of our study, further investigations are warranted to confirm these observations. Through phylogenetic analyses, we uncovered indications that R. hanluica might have originated within the Nanling region, dispersing along the east-west mountain ranges, with a significant contribution originating from Jiuyi Shan. The genetic distributions uncovered through our research reflect historical migratory patterns, evident in the distinct haplotypes of the RAG2 gene between the western and eastern parts of the studied area. Moreover, Heng Shan and Yangming Shan exhibited unique genetic signatures, possibly influenced by geographic isolation, which has shaped their distinct genotypes. The insights gained from this study hold profound implications for conservation efforts. By identifying regions rich in genetic diversity and crucial gene flow corridors, we can develop more effective conservation strategies. Preserving these genetically diverse areas, especially within the Nanling Mountains, is vital for maintaining the evolutionary potential of R. hanluica. In conclusion, our research has laid a solid foundation for understanding the genetic landscape of R. hanluica, shedding light on its origins, population structures, and evolutionary trajectories. This knowledge will undoubtedly guide future research endeavors and inform conservation strategies for this endemic amphibian.

5.
Article in English | MEDLINE | ID: mdl-38875098

ABSTRACT

Deep neural networks have exhibited remarkable performance in image super-resolution (SR) tasks by learning a mapping from low-resolution (LR) images to high-resolution (HR) images. However, the SR problem is typically an ill-posed problem and existing methods would come with several limitations. First, the possible mapping space of SR can be extremely large since there may exist many different HR images that can be super-resolved from the same LR image. As a result, it is hard to directly learn a promising SR mapping from such a large space. Second, it is often inevitable to develop very large models with extremely high computational cost to yield promising SR performance. In practice, one can use model compression techniques to obtain compact models by reducing model redundancy. Nevertheless, it is hard for existing model compression methods to accurately identify the redundant components due to the extremely large SR mapping space. To alleviate the first challenge, we propose a dual regression learning scheme to reduce the space of possible SR mappings. Specifically, in addition to the mapping from LR to HR images, we learn an additional dual regression mapping to estimate the downsampling kernel and reconstruct LR images. In this way, the dual mapping acts as a constraint to reduce the space of possible mappings. To address the second challenge, we propose a dual regression compression (DRC) method to reduce model redundancy in both layer-level and channel-level based on channel pruning. Specifically, we first develop a channel number search method that minimizes the dual regression loss to determine the redundancy of each layer. Given the searched channel numbers, we further exploit the dual regression manner to evaluate the importance of channels and prune the redundant ones. Extensive experiments show the effectiveness of our method in obtaining accurate and efficient SR models.

6.
Pathogens ; 11(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145477

ABSTRACT

Low glucose-6-phosphate dehydrogenase enzyme (G6PD) activity is a key determinant of drug-induced haemolysis. More than 230 clinically relevant genetic variants have been described. We investigated the variation in G6PD activity within and between different genetic variants. In this systematic review, individual patient data from studies reporting G6PD activity measured by spectrophotometry and corresponding the G6PD genotype were pooled (PROSPERO: CRD42020207448). G6PD activity was converted into percent normal activity applying study-specific definitions of 100%. In total, 4320 individuals from 17 studies across 10 countries were included, where 1738 (40.2%) had one of the 24 confirmed G6PD mutations, and 61 observations (3.5%) were identified as outliers. The median activity of the hemi-/homozygotes with A-(c.202G>A/c.376A>G) was 29.0% (range: 1.7% to 76.6%), 10.2% (range: 0.0% to 32.5%) for Mahidol, 16.9% (range 3.3% to 21.3%) for Mediterranean, 9.0% (range: 2.9% to 23.2%) for Vanua Lava, and 7.5% (range: 0.0% to 18.3%) for Viangchan. The median activity in heterozygotes was 72.1% (range: 16.4% to 127.1%) for A-(c.202G>A/c.376A>G), 54.5% (range: 0.0% to 112.8%) for Mahidol, 37.9% (range: 20.7% to 80.5%) for Mediterranean, 53.8% (range: 10.9% to 82.5%) for Vanua Lava, and 52.3% (range: 4.8% to 78.6%) for Viangchan. A total of 99.5% of hemi/homozygotes with the Mahidol mutation and 100% of those with the Mediterranean, Vanua Lava, and Viangchan mutations had <30% activity. For A-(c.202G>A/c.376A>G), 55% of hemi/homozygotes had <30% activity. The G6PD activity for each variant spanned the current classification thresholds used to define clinically relevant categories of enzymatic deficiency.

7.
Front Microbiol ; 12: 707548, 2021.
Article in English | MEDLINE | ID: mdl-34557168

ABSTRACT

Bacterial infection and imbalance of bacterial community in the genitourinary system of giant panda could affect the reproductive health. In severe cases, it can also lead to abortion. In this study, 13 of vaginal secretions in the estrue (E) group and seven of vaginal secretions in the non-estrue (NE) group were used to study the composition and diversity of vaginal bacterial communities between estrus and non-estrus by 16S rRNA gene sequencing analysis. The results showed that the vaginal microbiome in giant pandas shared the same top five abundant species between estrus and non-estrus at the phylum level. However, the vaginal microbiome changed significantly during estrus at the genus level. In top 10 genera, the abundance of Escherichia, Streptococcus, and Bacteroides in the E group was significantly higher than that in the NE group (p<0.05); Azomonas, Porphyromonas, Prevotella, Campylobacter, and Peptoniphilus in the NE group was significantly higher than that in the E group (p<0.05). The richness and diversity of vaginal microbiome in giant panda on estrus were significantly lower than those on non-estrus (p<0.05). It is noteworthy that the abundance of Streptococcus, Escherichia, and Bacteroides of vagina in giant pandas maintained low abundance in the daily. Whereas, they increased significantly during estrus period, which may play an important role in female giant pandas during estrus period. It was hypothesized that hormones may be responsible for the changes in the vaginal microbiome of giant pandas between estrus and no-estrus stages.

8.
Parasit Vectors ; 13(1): 537, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33121531

ABSTRACT

BACKGROUND: Parasitic infections are among the important causes of death of giant pandas (Ailuropoda melanoleuca) that hamper their survival in the wild. There are about 35 species of parasites which have been identified in giant pandas, but no information is currently available regarding the infection of Babesia in giant pandas. Babesia spp. are common intraerythrocytic parasite in wildlife, transmitted by ixodid ticks, which cause babesiosis. Clinical signs of babesiosis include fever, hemolysis, anemia, jaundice and death. METHODS: A species of Babesia was detected in the blood of a giant panda based on morphology and PCR amplification of the 18S rRNA gene. The phylogenetic relationship of Babesia sp. infecting giant panda was assessed by gene sequence alignment and phylogenetic analysis. RESULTS: Our analysis revealed that the Babesia isolate detected was most similar to an unidentified species of Babesia identified in black bears (Ursus thibetanus japonicus) from Japan (Babesia sp. Iwate, AB586027.1) with a 99.56% sequence similarity, followed by Babesia sp. EBB (AB566229.1, 99.50%) and Babesia sp. Akita (AB566229.1, 99.07%). CONCLUSIONS: To our knowledge, this is the first report of Babesia detected in the giant panda. The results indicate that this Babesia sp. may be a novel species, currently named Babesia sp. strain EBP01.


Subject(s)
Babesia/classification , Babesiosis/parasitology , Phylogeny , Ursidae/parasitology , Animals , Babesia/isolation & purification , Babesiosis/blood , China , Female , RNA, Ribosomal, 18S/genetics , Sequence Alignment
9.
J Infect ; 77(5): 435-439, 2018 11.
Article in English | MEDLINE | ID: mdl-29964138

ABSTRACT

OBJECTIVES: Hemoglobin E (HbE, ß26 Glu-Lys) is the most prevalent hemoglobinopathy in Southeast Asia. This study aimed to determine whether HbE protects against clinical Plasmodium vivax malaria in Southeast Asia. METHODS: In a case-control study performed in villages along the China-Myanmar border, we determined the prevalence of HbE in 257 villagers who had acute P. vivax infections and in 157 control healthy villagers. RESULTS: HbE in P. vivax patients (17.4%) was significantly less prevalent than in the healthy villager population (36.3%). Moreover, there was a complete lack of HbEE homozygotes in the vivax patients as compared to 9.5% prevalence in the healthy villagers. Using the HbAA group as the reference, both the HbEA heterozygotes and HbEE homozygotes had significantly lower odds of presenting with acute P. vivax infections. Furthermore, HbEA heterozygotes also had significantly lower P. vivax asexual parasite densities. HbEA did not affect the proportion of P. vivax patients with gametocytemia nor the gametocyte densities. CONCLUSIONS: HbE offers significant protection against the occurrence and parasite density of acute P. vivax infections and provides a renewed perspective on P. vivax malaria as a potentially strong driving force behind the high frequencies of HbE in the Kachin population.


Subject(s)
Disease Resistance/genetics , Hemoglobin E/genetics , Malaria, Vivax/ethnology , Adolescent , Adult , Aged , Asia, Southeastern/epidemiology , Case-Control Studies , Child , Child, Preschool , China/epidemiology , Female , Heterozygote , Humans , Male , Middle Aged , Myanmar/epidemiology , Plasmodium vivax , Prevalence , Young Adult
10.
PLoS One ; 12(5): e0177917, 2017.
Article in English | MEDLINE | ID: mdl-28531196

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobin E (HbE, ß26 Glu-Lys) are two common red cell disorders in Southeast Asia. G6PD deficiency produces hemolytic anemia, which can be triggered by certain drugs or infections. HbE is asymptomatic or is manifested as microcytic, minimally hemolytic anemia. The association between G6PD deficiency and HbE is little understood. This study aimed to investigate G6PD deficiency and HbE in a Kachin ethnic group in the China-Myanmar border area. G6PD enzyme activity was measured using a quantitative G6PD assay, G6PD variants genotyped by the SNaPshot assay, and an HbE gene mutation identified by an amplification refractory mutation system and subsequently confirmed by using a reverse dot blot hybridization assay from 100 unrelated individuals in the study area. G6PD enzyme activity ranged from 0.4 to 24.7 U/g Hb, and six males had severe G6PD deficiency (<0.12-1.2 U/g Hb), while six males and 12 females had mild G6PD deficiency (>1.2-4.5 U/g Hb). Among the 24 G6PD-deficient subjects, 22 (92%) had the Mahidol 487G>A mutation (12 male hemizygotes, one female homozygote, and nine female heterozygotes), while the G6PD genotypes in two female subjects were unknown. HbE was identified in 39 subjects (20 males and 19 females), including 15 HbEE (seven males and eight females) and 24 HbAE (13 males and 11 females). Twenty-three subjects co-inherited both G6PD deficiency and HbE (22 with HbAE and one with HbEE). Whereas mean Hb levels were not significantly different between the HbA and HbE groups, G6PD-deficient males had significantly lower Hb levels than G6PD-normal males (P < 0.05, t-test). However, it is noteworthy that two G6PD-deficient hemizygous males with HbAE were severely anemic with Hb levels below 50 g/L. This study revealed high prevalence of co-inheritance of G6PD deficiency with HbAE in the Kachin ethnicity, and a potential interaction of the G6PD Mahidol 487G>A and HbAE in males leading to severe anemia. The presence of 6% males with severe G6PD deficiency raised a major concern in the use of primaquine for radical cure of vivax malaria.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase/genetics , Hemoglobin E/genetics , Hemoglobinuria/epidemiology , Malaria/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , China/epidemiology , China/ethnology , Comorbidity , Endemic Diseases , Female , Genotype , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/ethnology , Hemoglobinuria/ethnology , Humans , Malaria/ethnology , Male , Middle Aged , Mutation , Myanmar/epidemiology , Myanmar/ethnology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL