Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Environ Qual ; 39(3): 791-8, 2010.
Article in English | MEDLINE | ID: mdl-20400575

ABSTRACT

Open cattle feedlots are a source of air pollutants that include particular matter (PM). Over 24 h, exposure to ambient concentrations of 50 microg m(-3) of the coarse-sized fraction PM (aerodynamic diameter <10 microm [PM(10)]) is recognized as a health concern for humans. The objective of our study was to document PM(10) concentration and emissions at two cattle feedlots in Australia over several days in summer. Two automated samplers were used to monitor the background and in-feedlot PM(10) concentrations. At the in-feedlot location, the PM(10) emission was calculated using a dispersion model. Our measurements revealed that the 24-h PM(10) concentrations on some of the days approached or exceeded the health criteria threshold of 50 microg m(-3) used in Australia. A key factor responsible for the generation of PM(10) was the increased activity of cattle in the evening that coincided with peak concentrations of PM(10) (maximum, 792 microg m(-3)) between 1930 and 2000 h. Rain coincided with a severe decline in PM(10) concentration and emission. A dispersion model used in our study estimated the emission of PM(10) between 31 and 60 g animal(-1) d(-1). These data contribute to needed information on PM(10) associated with livestock to develop results-based environmental policy.


Subject(s)
Air Pollutants , Cattle/physiology , Environmental Monitoring , Housing, Animal , Particulate Matter , Animals , Australia , Time Factors , Weather
2.
Science ; 185(4151): 609-10, 1974 Aug 16.
Article in English | MEDLINE | ID: mdl-17791234

ABSTRACT

A micrometeorological technique has been used to measure the flux of ammonia and related gaseous nitrogen compounds into the atmosphere from a pasture grazed by sheep. During 3 weeks in late summer, the average daily flux density of nitrogen in these forms was 0.26 kilogram per hectare. This is a substantial part of the nitrogen turnover in grazed pastures.

3.
J Anim Sci ; 77(6): 1392-401, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10375217

ABSTRACT

Methane (CH4) emissions from animals represent a significant contribution to anthropogenically produced radiatively active trace gases. Global and national CH4 budgets currently use predictive models based on emission data from laboratory experiments to estimate the magnitude of the animal source. This paper presents a method for measuring CH4 from animals under undisturbed field conditions and examines the performance of common models used to simulate field conditions. A micrometeorological mass difference technique was developed to measure CH4 production by cattle in pasture and feedlot conditions. Measurements were made continuously under field conditions, semiautomatically for several days, and the technique was virtually nonintrusive. The method permits a relatively large number of cattle to be sampled. Limitations include light winds (less than approximately 2 m/s), rapid wind direction changes, and high-precision CH4 gas concentration measurement. Methane production showed a marked periodicity, with greater emissions during periods of rumination as opposed to grazing. When the cattle were grazed on pasture, they produced .23 kg CH4 x animal(-1) x d(-1), which corresponded to the conversion of 7.7 to 8.4% of gross energy into CH4. When the same cattle were fed a highly digestible, high-grain diet, they produced .07 kg CH4 x animal(-1) x d(-1), corresponding to a conversion of only 1.9 to 2.2% of the feed energy to CH4. These measurements clearly document higher CH4 production (about four times) for cattle receiving low-quality, high-fiber diets than for cattle fed high-grain diets. The mass difference method provides a useful tool for "undisturbed" measurements on the influence of feedstuffs and nutritional management practices on CH4 production from animals and for developing improved management practice for enhanced environmental quality.


Subject(s)
Cattle/metabolism , Methane/analysis , Animal Feed/standards , Animal Husbandry/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL