Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38464162

ABSTRACT

The androgen receptor (AR) is the central determinant of prostate tissue identity and differentiation, controlling normal, growth-suppressive prostate-specific gene expression 1 . It is also a key driver of prostate tumorigenesis, becoming "hijacked" to drive oncogenic transcription 2-5 . However, the regulatory elements determining the execution of the growth suppressive AR transcriptional program, and whether this can be reactivated in prostate cancer (PCa) cells remains unclear. Canonical androgen response element (ARE) motifs are the classic DNA binding element for AR 6 . Here, we used a genome-wide strategy to modulate regulatory elements containing AREs to define distinct AR transcriptional programs. We find that activation of these AREs is specifically associated with differentiation and growth suppressive transcription, and this can be reactivated to cause death in AR + PCa cells. In contrast, repression of AREs is well tolerated by PCa cells, but deleterious to normal prostate cells. Finally, gene expression signatures driven by ARE activity are associated with improved prognosis and luminal phenotypes in human PCa patients. This study demonstrates that canonical AREs are responsible for a normal, growth-suppressive, lineage-specific transcriptional program, that this can be reengaged in PCa cells for potential therapeutic benefit, and genes controlled by this mechanism are clinically relevant in human PCa patients.

2.
Cell Rep ; 36(10): 109625, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496233

ABSTRACT

The normal androgen receptor (AR) cistrome and transcriptional program are fundamentally altered in prostate cancer (PCa). Here, we profile the chromatin landscape and AR-directed transcriptional program in normal prostate cells and show the impact of SPOP mutations, an early event in prostate tumorigenesis. In genetically normal mouse prostate organoids, SPOP mutation results in accessibility and AR binding patterns similar to that of human PCa. Consistent with dependence on AR signaling, castration of SPOP mutant mouse models results in the loss of neoplastic phenotypes, and human SPOP mutant PCa shows a favorable response to AR-targeted therapies. Together, these data validate mouse prostate organoids as a robust model for studying epigenomic and transcriptional alterations in normal prostate, provide valuable datasets for further studies, and show that a single genomic alteration may be sufficient to reprogram the chromatin of normal prostate cells toward oncogenic phenotypes, with potential therapeutic implications for AR-targeting therapies.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Neoplastic/genetics , Prostate/metabolism , Prostatic Neoplasms/metabolism , Androgens/immunology , Animals , Carcinogenesis/genetics , Male , Mice, Transgenic , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Signal Transduction/physiology
3.
Cancer Cell ; 35(4): 603-617.e8, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30930119

ABSTRACT

Deletion of the gene encoding the chromatin remodeler CHD1 is among the most common alterations in prostate cancer (PCa); however, the tumor-suppressive functions of CHD1 and reasons for its tissue-specific loss remain undefined. We demonstrated that CHD1 occupied prostate-specific enhancers enriched for the androgen receptor (AR) and lineage-specific cofactors. Upon CHD1 loss, the AR cistrome was redistributed in patterns consistent with the oncogenic AR cistrome in PCa samples and drove tumor formation in the murine prostate. Notably, this cistrome shift was associated with a unique AR transcriptional signature enriched for pro-oncogenic pathways unique to this tumor subclass. Collectively, these data credential CHD1 as a tumor suppressor in the prostate that constrains AR binding/function to limit tumor progression.


Subject(s)
Carcinogenesis , DNA Helicases/deficiency , DNA-Binding Proteins/deficiency , Enhancer Elements, Genetic , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/deficiency , Animals , Carcinogenesis/genetics , Cell Line, Tumor , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Binding , Receptors, Androgen/genetics , Signal Transduction , Tissue Culture Techniques , Tumor Suppressor Proteins/genetics
4.
Cancer Cell ; 31(3): 436-451, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28292441

ABSTRACT

Recurrent point mutations in SPOP define a distinct molecular subclass of prostate cancer. Here, we describe a mouse model showing that mutant SPOP drives prostate tumorigenesis in vivo. Conditional expression of mutant SPOP in the prostate dramatically altered phenotypes in the setting of Pten loss, with early neoplastic lesions (high-grade prostatic intraepithelial neoplasia) with striking nuclear atypia and invasive, poorly differentiated carcinoma. In mouse prostate organoids, mutant SPOP drove increased proliferation and a transcriptional signature consistent with human prostate cancer. Using these models and human prostate cancer samples, we show that SPOP mutation activates both PI3K/mTOR and androgen receptor signaling, effectively uncoupling the normal negative feedback between these two pathways.


Subject(s)
Mutation , Nuclear Proteins/genetics , Phosphatidylinositol 3-Kinases/physiology , Prostatic Neoplasms/etiology , Receptors, Androgen/physiology , Repressor Proteins/genetics , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology , Animals , Cell Proliferation , Humans , Male , Mice , Nuclear Receptor Coactivator 3/physiology , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-ets/physiology
SELECTION OF CITATIONS
SEARCH DETAIL