Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 171(7): 1545-1558.e18, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29153836

ABSTRACT

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Subject(s)
Gene Expression Regulation , Lipogenesis , RNA Processing, Post-Transcriptional , Signal Transduction , Animals , Cell Nucleus/metabolism , Cholesterol/metabolism , Fatty Acids/metabolism , Female , Heterografts , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Nude , Neoplasm Transplantation , Protein Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
2.
Mol Cell ; 83(16): 3010-3026.e8, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37595559

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.


Subject(s)
Arginine , Lipogenesis , Sterol Regulatory Element Binding Protein 1 , Lipogenesis/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , RNA Splicing Factors , Sterol Regulatory Element Binding Protein 1/metabolism , Humans , Sterol Regulatory Element Binding Proteins/metabolism
3.
Cell ; 144(5): 703-18, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21376233

ABSTRACT

Among breast cancers, triple-negative breast cancer (TNBC) is the most poorly understood and is refractory to current targeted therapies. Using a genetic screen, we identify the PTPN12 tyrosine phosphatase as a tumor suppressor in TNBC. PTPN12 potently suppresses mammary epithelial cell proliferation and transformation. PTPN12 is frequently compromised in human TNBCs, and we identify an upstream tumor-suppressor network that posttranscriptionally controls PTPN12. PTPN12 suppresses transformation by interacting with and inhibiting multiple oncogenic tyrosine kinases, including HER2 and EGFR. The tumorigenic and metastatic potential of PTPN12-deficient TNBC cells is severely impaired upon restoration of PTPN12 function or combined inhibition of PTPN12-regulated tyrosine kinases, suggesting that TNBCs are dependent on the proto-oncogenic tyrosine kinases constrained by PTPN12. Collectively, these data identify PTPN12 as a commonly inactivated tumor suppressor and provide a rationale for combinatorially targeting proto-oncogenic tyrosine kinases in TNBC and other cancers based on their profile of tyrosine-phosphatase activity.


Subject(s)
Breast Neoplasms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 12/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 12/metabolism , Tumor Suppressor Proteins/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Transformation, Neoplastic , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , MicroRNAs/metabolism , Mutation , Neoplasm Metastasis , Protein Processing, Post-Translational
4.
Nature ; 585(7824): 283-287, 2020 09.
Article in English | MEDLINE | ID: mdl-32814897

ABSTRACT

The risk of cancer and associated mortality increases substantially in humans from the age of 65Ā years onwards1-6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing9-12. Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.


Subject(s)
Aging/metabolism , Disease Progression , Methylmalonic Acid/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Adult , Aged , Aging/blood , Aging/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Methylmalonic Acid/blood , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/blood , Neoplasms/genetics , SOXC Transcription Factors/metabolism , Signal Transduction , Transcriptome/genetics , Transforming Growth Factor beta/metabolism
5.
Cell ; 143(1): 71-83, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20850176

ABSTRACT

Aneuploidy causes a proliferative disadvantage in all normal cells analyzed to date, yet this condition is associated with a disease characterized by unabated proliferative potential, cancer. The mechanisms that allow cancer cells to tolerate the adverse effects of aneuploidy are not known. To probe this question, we identified aneuploid yeast strains with improved proliferative abilities. Their molecular characterization revealed strain-specific genetic alterations as well as mutations shared between different aneuploid strains. Among the latter, a loss-of-function mutation in the gene encoding the deubiquitinating enzyme Ubp6 improves growth rates in four different aneuploid yeast strains by attenuating the changes in intracellular protein composition caused by aneuploidy. Our results demonstrate the existence of aneuploidy-tolerating mutations that improve the fitness of multiple different aneuploidies and highlight the importance of ubiquitin-proteasomal degradation in suppressing the adverse effects of aneuploidy.


Subject(s)
Aneuploidy , Saccharomyces cerevisiae/genetics , Cell Proliferation , Chromosome Aberrations , Endopeptidases/genetics , Gene Deletion , Humans , Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin/metabolism
6.
Mol Cell ; 67(3): 512-527.e4, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28757207

ABSTRACT

Aberrant signaling by the mammalian target of rapamycin (mTOR) contributes to the devastating features of cancer cells. Thus, mTOR is a critical therapeutic target and catalytic inhibitors are being investigated as anti-cancer drugs. Although mTOR inhibitors initially block cell proliferation, cell viability and migration in some cancer cells are quickly restored. Despite sustained inhibition of mTORC1/2 signaling, Akt, a kinase regulating cell survival and migration, regains phosphorylation at its regulatory sites. Mechanistically, mTORC1/2 inhibition promotes reorganization of integrin/focal adhesion kinase-mediated adhesomes, induction of IGFR/IR-dependent PI3K activation, and Akt phosphorylation via an integrin/FAK/IGFR-dependent process. This resistance mechanism contributes to xenograft tumor cell growth, which is prevented with mTOR plus IGFR inhibitors, supporting this combination as a therapeutic approach for cancers.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cell Movement/drug effects , Drug Resistance, Neoplasm , Focal Adhesion Kinase 1/metabolism , Melanoma/drug therapy , Multiprotein Complexes/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Receptors, Somatomedin/antagonists & inhibitors , Skin Neoplasms/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Female , Focal Adhesion Kinase 1/genetics , Humans , Integrin alpha2/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Melanoma/enzymology , Melanoma/pathology , Mice, Nude , Multiprotein Complexes/metabolism , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor, IGF Type 1 , Receptors, Somatomedin/genetics , Receptors, Somatomedin/metabolism , Signal Transduction/drug effects , Skin Neoplasms/enzymology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Time Factors , Transfection , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
7.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526671

ABSTRACT

An extra copy of chromosome 21 causes Down syndrome, the most common genetic disease in humans. The mechanisms contributing to aneuploidy-related pathologies in this syndrome, independent of the identity of the triplicated genes, are not well defined. To characterize aneuploidy-driven phenotypes in trisomy 21 cells, we performed global transcriptome, proteome, and phenotypic analyses of primary human fibroblasts from individuals with Patau (trisomy 13), Edwards (trisomy 18), or Down syndromes. On average, mRNA and protein levels were increased by 1.5-fold in all trisomies, with a subset of proteins enriched for subunits of macromolecular complexes showing signs of posttranscriptional regulation. These results support the lack of evidence for widespread dosage compensation or dysregulation of chromosomal domains in human autosomes. Furthermore, we show that several aneuploidy-associated phenotypes are present in trisomy 21 cells, including lower viability and increased dependency on serine-driven lipid synthesis. Our studies establish a critical role of aneuploidy, independent of triplicated gene identity, in driving cellular defects associated with trisomy 21.


Subject(s)
Aneuploidy , Fibroblasts/pathology , Trisomy/genetics , Cell Proliferation , Cell Survival , Cells, Cultured , Fibroblasts/metabolism , Gene Dosage/genetics , Gene Expression Profiling , Gene Expression Regulation , Humans , Lipids/biosynthesis , Macromolecular Substances/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine/metabolism , Transcription, Genetic , Up-Regulation
8.
Cell Commun Signal ; 21(1): 58, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36915197

ABSTRACT

BACKGROUND: PD-L1, a transmembrane ligand for immune checkpoint receptor PD1, has been successfully targeted to activate an anti-tumor immune response in a variety of solid tumors, including non-small cell lung cancer (NSCLC). Despite the success of targeting PD-L1, only about 20% of patients achieve a durable response. The reasons for the heterogeneity in response are not understood, although some molecular subtypes (e.g., mutant EGF receptor tumors) are generally poor responders. Although PD-L1 is best characterized as a transmembrane PD1 ligand, the emerging view is that PD-L1 has functions independent of activating PD1 signaling. It is not known whether these cell-intrinsic functions of PD-L1 are shared among non-transformed and transformed cells, if they vary among cancer molecular subtypes, or if they are impacted by anti-PD-L1 therapy. METHODS: Here we use quantitative microscopy techniques and APEX2 proximity mapping to describe the behavior of PD-L1 and to identify PD-L1's proximal proteome in human lung epithelial cells. RESULTS: Our data reveal growth factor control of PD-L1 recycling as a mechanism for acute and reversible regulation of PD-L1 density on the plasma membrane. In addition, we describe novel PD-L1 biology restricted to mutant EGFR cells. Anti-PD-L1 antibody treatment of mutant EGFR cells perturbs cell intrinsic PD-L1 functions, leading to reduced cell migration, increased half-life of EGFR and increased extracellular vesicle biogenesis, whereas anti-PD-L1 antibody does not induce these changes in wild type EGFR cells. CONCLUSIONS: Growth factor acute regulation of PD-L1 trafficking, by contributing to the control of plasma membrane density, might contribute to the regulation of PD-L1's immune checkpoint activity, whereas the specific effects of anti-PD-L1 on mutant EGFR cells might contribute to the poor anti-PD-L1 response of mutant EGFR tumors. Video Abstract.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Proteome , Ligands , ErbB Receptors/genetics , ErbB Receptors/metabolism , Lung/metabolism , B7-H1 Antigen/metabolism , Mutation
9.
Br J Anaesth ; 131(4): 745-763, 2023 10.
Article in English | MEDLINE | ID: mdl-37567808

ABSTRACT

BACKGROUND: Neuropathic pain impairs quality of life, is widely prevalent, and incurs significant costs. Current pharmacological therapies have poor/no efficacy and significant adverse effects; safe and effective alternatives are needed. Hyperpolarisation-activated cyclic nucleotide-regulated (HCN) channels are causally implicated in some forms of peripherally mediated neuropathic pain. Whilst 2,6-substituted phenols, such as 2,6-di-tert-butylphenol (26DTB-P), selectively inhibit HCN1 gating and are antihyperalgesic, the development of therapeutically tolerable, HCN-selective antihyperalgesics based on their inverse agonist activity requires that such drugs spare the cardiac isoforms and do not cross the blood-brain barrier. METHODS: In silico molecular dynamics simulation, inĀ vitro electrophysiology, and inĀ vivo rat spared nerve injury methods were used to test whether 'hindered' variants of 26DTB-P (wherein a hydrophilic 'anchor' is attached in the para-position of 26DTB-P via an acyl chain 'tether') had the desired properties. RESULTS: Molecular dynamics simulation showed that membrane penetration of hindered 26DTB-Ps is controlled by a tethered diol anchor without elimination of head group rotational freedom. InĀ vitro and inĀ vivo analysis showed that BP4L-18:1:1, a variant wherein a diol anchor is attached to 26DTB-P via an 18-carbon tether, is an HCN1 inverse agonist and an orally available antihyperalgesic. With a CNS multiparameter optimisation score of 2.25, a >100-fold lower drug load in the brain vs blood, and an absence of adverse cardiovascular or CNS effects, BP4L-18:1:1 was shown to be poorly CNS penetrant and cardiac sparing. CONCLUSIONS: These findings provide a proof-of-concept demonstration that anchor-tethered drugs are a new chemotype for treatment of disorders involving membrane targets.


Subject(s)
Drug Inverse Agonism , Neuralgia , Rats , Animals , Quality of Life , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/therapeutic use , Neuralgia/drug therapy , Electrophysiological Phenomena
10.
Mol Cell ; 59(5): 867-81, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26051181

ABSTRACT

Execution of the DNA damage response (DDR) relies upon a dynamic array of protein modifications. Using quantitative proteomics, we have globally profiled ubiquitination, acetylation, and phosphorylation in response to UV and ionizing radiation. To improve acetylation site profiling, we developed the strategy FACET-IP. Our datasets of 33,500 ubiquitination and 16,740 acetylation sites provide valuable insight into DDR remodeling of the proteome. We find that K6- and K33-linked polyubiquitination undergo bulk increases in response to DNA damage, raising the possibility that these linkages are largely dedicated to DDR function. We also show that Cullin-RING ligases mediate 10% of DNA damage-induced ubiquitination events and that EXO1 is an SCF-Cyclin F substrate in the response to UV radiation. Our extensive datasets uncover additional regulated sites on known DDR players such as PCNA and identify previously unknown DDR targets such as CENPs, underscoring the broad impact of the DDR on cellular physiology.


Subject(s)
DNA Damage , Proteomics/methods , Acetylation/radiation effects , Cullin Proteins/metabolism , DNA Repair , DNA Repair Enzymes/metabolism , Databases, Protein , Exodeoxyribonucleases/metabolism , HeLa Cells , Humans , Phosphorylation/radiation effects , Proteasome Endopeptidase Complex/metabolism , Protein Array Analysis/statistics & numerical data , Proteome/metabolism , Proteome/radiation effects , Proteomics/statistics & numerical data , Spindle Apparatus/metabolism , Ubiquitination/radiation effects
11.
Proc Natl Acad Sci U S A ; 116(24): 11796-11805, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31142645

ABSTRACT

The current model of polarized plasma membrane protein sorting in epithelial cells has been largely generated on the basis of experiments characterizing the polarized distribution of a relatively small number of overexpressed model proteins under various experimental conditions. Thus, the possibility exists that alternative roles of various types of sorting machinery may have been underestimated or missed. Here, we utilize domain-selective surface biotinylation combined with stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry to quantitatively define large populations of apical and basolateral surface proteins in Madin-Darby canine kidney (MDCK) cells. We identified 313 plasma membrane proteins, of which 38% were apical, 51% were basolateral, and 11% were nonpolar. Silencing of clathrin adaptor proteins (AP) AP-1A, AP-1B, or both caused redistribution of basolateral proteins as expected but also, of a large population of apical proteins. Consistent with their previously reported ability to compensate for one another, the strongest loss of polarity was observed when we silenced AP-1A and AP-1B simultaneously. We found stronger evidence of compensation in the apical pathway compared with the basolateral pathway. Surprisingly, we also found subgroups of proteins that were affected after silencing just one adaptor, indicating previously unrecognized independent roles for AP-1A and AP-1B. While AP-1B silencing mainly affected basolateral polarity, AP-1A silencing seemed to cause comparable loss of apical and basolateral polarity. Our results uncover previously overlooked roles of AP-1 in polarized distribution of apical and basolateral proteins and introduce surface proteomics as a method to examine mechanisms of polarization with a depth not possible until now.


Subject(s)
Cell Polarity/physiology , Clathrin/metabolism , Membrane Proteins/metabolism , Proteomics/methods , Transcription Factor AP-1/metabolism , Animals , Biotinylation/physiology , Cell Line , Dogs , Epithelial Cells/metabolism , Madin Darby Canine Kidney Cells , Protein Transport/physiology
12.
Proc Natl Acad Sci U S A ; 116(21): 10382-10391, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31072927

ABSTRACT

During skeletal muscle regeneration, muscle stem cells (MuSCs) respond to multiple signaling inputs that converge onto mammalian target of rapamycin complex 1 (mTORC1) signaling pathways. mTOR function is essential for establishment of the differentiation-committed progenitors (early stage of differentiation, marked by the induction of myogenin expression), myotube fusion, and, ultimately, hypertrophy (later stage of differentiation). While a major mTORC1 substrate, p70S6K, is required for myotube fusion and hypertrophy, an mTORC1 effector for the induction of myogenin expression remains unclear. Here, we identified Per-Arnt-Sim domain kinase (PASK) as a downstream phosphorylation target of mTORC1 in MuSCs during differentiation. We have recently shown that the PASK phosphorylates Wdr5 to stimulate MuSC differentiation by epigenetically activating the myogenin promoter. We show that phosphorylation of PASK by mTORC1 is required for the activation of myogenin transcription, exit from self-renewal, and induction of the myogenesis program. Our studies reveal that mTORC1-PASK signaling is required for the rise of myogenin-positive committed myoblasts (early stage of myogenesis), whereas mTORC1-S6K signaling is required for myoblast fusion (later stage of myogenesis). Thus, our discoveries allow molecular dissection of mTOR functions during different stages of the myogenesis program driven by two different substrates.


Subject(s)
Cell Differentiation/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Communication/physiology , Cells, Cultured , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Muscle Development/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Myogenin/metabolism , Phosphorylation/physiology , Satellite Cells, Skeletal Muscle/metabolism , Signal Transduction/physiology
13.
Mol Cell ; 50(5): 686-98, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23746352

ABSTRACT

Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis.


Subject(s)
Carboxy-Lyases/metabolism , Lipid Metabolism , Mitochondrial Proteins/metabolism , Sirtuins/metabolism , Acetylation , Adipose Tissue, White/metabolism , Animals , Diet , Fatty Acids/metabolism , Lipid Metabolism/genetics , Lipids/biosynthesis , Male , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , Obesity/etiology , Obesity/metabolism , Oxidation-Reduction , Sirtuins/genetics
14.
BMC Bioinformatics ; 20(1): 7, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30611210

ABSTRACT

BACKGROUND: To further our understanding of immunopeptidomics, improved tools are needed to identify peptides presented by major histocompatibility complex class I (MHC-I). Many existing tools are limited by their reliance upon chemical affinity data, which is less biologically relevant than sampling by mass spectrometry, and other tools are limited by incomplete exploration of machine learning approaches. Herein, we assemble publicly available data describing human peptides discovered by sampling the MHC-I immunopeptidome with mass spectrometry and use this database to train random forest classifiers (ForestMHC) to predict presentation by MHC-I. RESULTS: As measured by precision in the top 1% of predictions, our method outperforms NetMHC and NetMHCpan on test sets, and it outperforms both these methods and MixMHCpred on new data from an ovarian carcinoma cell line. We also find that random forest scores correlate monotonically, but not linearly, with known chemical binding affinities, and an information-based analysis of classifier features shows the importance of anchor positions for our classification. The random-forest approach also outperforms a deep neural network and a convolutional neural network trained on identical data. Finally, we use our large database to confirm that gene expression partially determines peptide presentation. CONCLUSIONS: ForestMHC is a promising method to identify peptides bound by MHC-I. We have demonstrated the utility of random forest-based approaches in predicting peptide presentation by MHC-I, assembled the largest known database of MS binding data, and mined this database to show the effect of gene expression on peptide presentation. ForestMHC has potential applicability to basic immunology, rational vaccine design, and neoantigen binding prediction for cancer immunotherapy. This method is publicly available for applications and further validation.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Machine Learning , Peptides/immunology , Proteome/metabolism , Algorithms , Cell Line, Tumor , Databases, Protein , Gene Expression Regulation , Humans , Peptides/chemistry , Reproducibility of Results
15.
J Proteome Res ; 18(3): 1411-1417, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30576142

ABSTRACT

Mass-spectrometry-based phosphoproteomics has revolutionized phosphoprotein analysis and enhanced our understanding of diverse and fundamental cellular processes important for human health and disease. Because of their relative scarcity, phosphopeptides must be enriched before analysis. Many different enrichment methods and materials have been described, and many reports have made claims about the advantages of particular materials and methodological variations. We demonstrate an effective and highly reproducible single-step enrichment method using an off-the-shelf preparation of calcium titanate. Using two different cell lines and replicate analysis, we show that our method achieves a purity and depth of analysis comparable or superior to a widely used TiO2-based method at a reduced cost and effort. This method provides a new and immediately available tool for expanding the reach of phosphoproteomic inquiry.


Subject(s)
Phosphopeptides/chemistry , Phosphoproteins/chemistry , Proteomics/methods , Calcium/chemistry , Cell Line , Humans , Phosphorylation , Tandem Mass Spectrometry , Titanium/chemistry
16.
Proc Natl Acad Sci U S A ; 113(26): E3667-75, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27298372

ABSTRACT

The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.


Subject(s)
DNA Damage , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , DNA Repair , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
17.
J Biol Chem ; 292(12): 4925-4941, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28100785

ABSTRACT

Protein phosphatase 2A (PP2A) plays important roles in controlling mitosis in all eukaryotic cells. The form of PP2A that controls mitosis is associated with a conserved regulatory subunit that is called B55 in vertebrates and Cdc55 in budding yeast. The activity of this form of PP2A can be inhibited by binding of conserved Igo/ENSA proteins. Although the mechanisms that activate Igo/ENSA to bind and inhibit PP2A are well understood, little is known about how Igo/Ensa are inactivated. Here, we have analyzed regulation of Igo/ENSA in the context of a checkpoint pathway that links mitotic entry to membrane growth in budding yeast. Protein kinase C (Pkc1) relays signals in the pathway by activating PP2ACdc55 We discovered that constitutively active Pkc1 can drive cells through a mitotic checkpoint arrest, which suggests that Pkc1-dependent activation of PP2ACdc55 plays a critical role in checkpoint signaling. We therefore used mass spectrometry to determine how Pkc1 modifies the PP2ACdc55 complex. This revealed that Pkc1 induces changes in the phosphorylation of multiple subunits of the complex, as well as dissociation of Igo/ENSA. Pkc1 directly phosphorylates Cdc55 and Igo/ENSA, and phosphorylation site mapping and mutagenesis indicate that phosphorylation of Cdc55 contributes to Igo/ENSA dissociation. Association of Igo2 with PP2ACdc55 is regulated during the cell cycle, yet mutation of Pkc1-dependent phosphorylation sites on Cdc55 and Igo2 did not cause defects in mitotic progression. Together, the data suggest that Pkc1 controls PP2ACdc55 by multiple overlapping mechanisms.


Subject(s)
Cell Cycle Proteins/metabolism , Protein Kinase C/metabolism , Protein Phosphatase 2/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Cell Cycle Proteins/analysis , Models, Molecular , Phosphorylation , Protein Binding , Protein Kinase C/analysis , Protein Phosphatase 2/analysis , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/analysis , Sequence Alignment
18.
EMBO J ; 33(14): 1548-64, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24843043

ABSTRACT

The majority of ER-targeted tail-anchored (TA) proteins are inserted into membranes by the Guided Entry of Tail-anchored protein (GET) system. Disruption of this system causes a subset of TA proteins to mislocalize to mitochondria. We show that the AAA+ ATPase Msp1 limits the accumulation of mislocalized TA proteins on mitochondria. Deletion of MSP1 causes the Pex15 and Gos1 TA proteins to accumulate on mitochondria when the GET system is impaired. Likely as a result of failing to extract mislocalized TA proteins, yeast with combined mutation of the MSP1 gene and the GET system exhibit strong synergistic growth defects and severe mitochondrial damage, including loss of mitochondrial DNA and protein and aberrant mitochondrial morphology. Like yeast Msp1, human ATAD1 limits the mitochondrial mislocalization of PEX26 and GOS28, orthologs of Pex15 and Gos1, respectively. GOS28 protein level is also increased in ATAD1(-/-) mouse tissues. Therefore, we propose that yeast Msp1 and mammalian ATAD1 are conserved members of the mitochondrial protein quality control system that might promote the extraction and degradation of mislocalized TA proteins to maintain mitochondrial integrity.


Subject(s)
Adenosine Triphosphatases/metabolism , Lipid-Linked Proteins/metabolism , Mitochondria/physiology , Proteolysis , Saccharomyces cerevisiae Proteins/metabolism , ATPases Associated with Diverse Cellular Activities , Animals , Hep G2 Cells , Humans , Immunoblotting , Immunoprecipitation , Mass Spectrometry , Membrane Proteins/metabolism , Mice , Microscopy, Fluorescence , Mitochondria/metabolism , Oxygen Consumption/physiology , Phosphoproteins/metabolism , Plasmids/genetics , Protein Transport , RNA, Small Interfering/genetics , SNARE Proteins/metabolism , Saccharomyces cerevisiae
19.
Mol Cell ; 40(3): 465-80, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21070972

ABSTRACT

We show that Ydr049 (renamed VCP/Cdc48-associated mitochondrial stress-responsive--Vms1), a member of an unstudied pan-eukaryotic protein family, translocates from the cytosol to mitochondria upon mitochondrial stress. Cells lacking Vms1 show progressive mitochondrial failure, hypersensitivity to oxidative stress, and decreased chronological life span. Both yeast and mammalian Vms1 stably interact with Cdc48/VCP/p97, a component of the ubiquitin/proteasome system with a well-defined role in endoplasmic reticulum-associated protein degradation (ERAD), wherein misfolded ER proteins are degraded in the cytosol. We show that oxidative stress triggers mitochondrial localization of Cdc48 and this is dependent on Vms1. When this system is impaired by mutation of Vms1, ubiquitin-dependent mitochondrial protein degradation, mitochondrial respiratory function, and cell viability are compromised. We demonstrate that Vms1 is a required component of an evolutionarily conserved system for mitochondrial protein degradation, which is necessary to maintain mitochondrial, cellular, and organismal viability.


Subject(s)
Mitochondrial Proteins/metabolism , Protein Processing, Post-Translational , Stress, Physiological , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/metabolism , Gene Deletion , Humans , Hydrogen Peroxide/pharmacology , Longevity/drug effects , Mice , Microbial Viability/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Sequence Data , Protein Binding/drug effects , Protein Processing, Post-Translational/drug effects , Protein Transport/drug effects , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sirolimus/pharmacology , Stress, Physiological/drug effects , Ubiquitin/metabolism , Valosin Containing Protein
20.
J Proteome Res ; 16(3): 1121-1132, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28102081

ABSTRACT

Labeling peptides with isobaric tags is a popular strategy in quantitative bottom-up proteomics. In this study, we labeled six breast tumor cell lysates (1.34 mg proteins per channel) using 10-plex tandem mass tag reagents and analyzed the samples on a Q Exactive HF Quadrupole-Orbitrap mass spectrometer. We identified a total of 8,706 proteins and 28,186 phosphopeptides, including 7,394 proteins and 23,739 phosphosites common to all channels. The majority of technical replicates correlated with a R2 ≥ 0.98, indicating minimum variability was introduced after labeling. Unsupervised hierarchical clustering of phosphopeptide data sets successfully classified the breast tumor samples into Her2 (epidermal growth factor receptor 2) positive and Her2 negative groups, whereas mRNA abundance did not. The tyrosine phosphorylation levels of receptor tyrosine kinases, phosphoinositide-3-kinase, protein kinase C delta, and Src homology 2, among others, were significantly higher in the Her2 positive than the Her2 negative group. Despite ratio compression in MS2-based experiments, we demonstrated the ratios calculated using an MS2 method are highly correlated (R2 > 0.65) with ratios obtained using MS3-based quantitation (using a Thermo Orbitrap Fusion mass spectrometer) with reduced ratio suppression. Given the deep coverage of global and phosphoproteomes, our data show that MS2-based quantitation using TMT can be successfully used for large-scale multiplexed quantitative proteomics.


Subject(s)
Breast Neoplasms/pathology , Proteomics/methods , Staining and Labeling , Cell Line, Tumor , Cluster Analysis , Female , Humans , Mass Spectrometry/methods , Phosphopeptides/analysis , Phosphorylation , Receptor, ErbB-2/analysis , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL