Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Immunity ; 51(1): 131-140.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315031

ABSTRACT

Macrophages play an important role in structural cardiac remodeling and the transition to heart failure following myocardial infarction (MI). Previous research has focused on the impact of blood-derived monocytes on cardiac repair. Here we examined the contribution of resident cavity macrophages located in the pericardial space adjacent to the site of injury. We found that disruption of the pericardial cavity accelerated maladaptive post-MI cardiac remodeling. Gata6+ macrophages in mouse pericardial fluid contributed to the reparative immune response. Following experimental MI, these macrophages invaded the epicardium and lost Gata6 expression but continued to perform anti-fibrotic functions. Loss of this specialized macrophage population enhanced interstitial fibrosis after ischemic injury. Gata6+ macrophages were present in human pericardial fluid, supporting the notion that this reparative function is relevant in human disease. Our findings uncover an immune cardioprotective role for the pericardial tissue compartment and argue for the reevaluation of surgical procedures that remove the pericardium.


Subject(s)
Fibrosis/prevention & control , GATA6 Transcription Factor/metabolism , Heart/physiology , Macrophages/immunology , Myocardial Infarction/immunology , Myocardium/pathology , Pericardium/immunology , Animals , Cell Movement , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ventricular Remodeling
2.
Curr Opin Hematol ; 31(1): 6-15, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37905750

ABSTRACT

PURPOSE OF REVIEW: Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS: The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY: Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.


Subject(s)
Blood Platelets , Cellular Senescence , Cytophagocytosis , Aged , Humans , Blood Platelets/metabolism , Blood Platelets/physiology , N-Acetylneuraminic Acid/metabolism , Polysaccharides , Thrombocytopenia/etiology , Thrombocytopenia/metabolism , Thrombocytopenia/physiopathology , Cellular Senescence/physiology , Cytophagocytosis/physiology
3.
Blood ; 137(10): 1392-1405, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32932519

ABSTRACT

Polyphosphate is a procoagulant inorganic polymer of linear-linked orthophosphate residues. Multiple investigations have established the importance of platelet polyphosphate in blood coagulation; however, the mechanistic details of polyphosphate homeostasis in mammalian species remain largely undefined. In this study, xenotropic and polytropic retrovirus receptor 1 (XPR1) regulated polyphosphate in platelets and was implicated in thrombosis in vivo. We used bioinformatic analyses of omics data to identify XPR1 as a major phosphate transporter in platelets. XPR1 messenger RNA and protein expression inversely correlated with intracellular polyphosphate content and release. Pharmacological interference with XPR1 activity increased polyphosphate stores, led to enhanced platelet-driven coagulation, and amplified thrombus formation under flow via the polyphosphate/factor XII pathway. Conditional gene deletion of Xpr1 in platelets resulted in polyphosphate accumulation, accelerated arterial thrombosis, and augmented activated platelet-driven pulmonary embolism without increasing bleeding in mice. These data identify platelet XPR1 as an integral regulator of platelet polyphosphate metabolism and reveal a fundamental role for phosphate homeostasis in thrombosis.


Subject(s)
Blood Platelets/metabolism , Polyphosphates/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Virus/metabolism , Thrombosis/metabolism , Animals , Biological Transport , Blood Coagulation , Factor XII/metabolism , Female , Male , Mice , Thrombosis/blood , Xenotropic and Polytropic Retrovirus Receptor
4.
Hepatology ; 73(5): 1967-1984, 2021 05.
Article in English | MEDLINE | ID: mdl-32761929

ABSTRACT

BACKGROUND AND AIMS: Kupffer cells (KCs) are the resident intravascular phagocyte population of the liver and critical to the capture and killing of bacteria. Calcineurin/nuclear factor of activated T cells (NFAT) inhibitors (CNIs) such as tacrolimus are used to prevent rejection in solid organ transplant recipients. Although their effect on lymphocytes has been studied extensively, there are limited experimental data about if and how CNIs shape innate immunity, and whether this contributes to the higher rates of infection observed in patients taking CNIs. APPROACH AND RESULTS: Here, we investigated the impact of tacrolimus treatment on innate immunity and, more specifically, on the capability of Kupffer cells (KCs) to fight infections. Retrospective analysis of data of >2,700 liver transplant recipients showed that taking calcineurin inhibitors such as tacrolimus significantly increased the likelihood of Staphylococcus aureus infection. Using a mouse model of acute methicillin-resistant S. aureus (MRSA) bacteremia, most bacteria were sequestered in the liver and we found that bacteria were more likely to disseminate and kill the host in tacrolimus-treated mice. Using imaging, we unveiled the mechanism underlying this observation: the reduced capability of KCs to capture, phagocytose, and destroy bacteria in tacrolimus-treated animals. Furthermore, in a gene expression analysis of infected KCs, the triggering receptor expressed on myeloid cells 1 (TREM1) pathway was the one with the most significant down-regulation after tacrolimus treatment. TREM1 inhibition likewise inhibited KC bacteria capture. TREM1 levels on neutrophils as well as the overall neutrophil response after infection were unaffected by tacrolimus treatment. CONCLUSIONS: Our results indicate that tacrolimus treatment has a significant impact directly on KCs and on TREM1, thereby compromising their capacity to fend off infections.


Subject(s)
Bacteremia/etiology , Immunosuppressive Agents/adverse effects , Kupffer Cells/drug effects , Organ Transplantation/adverse effects , Staphylococcal Infections/etiology , Tacrolimus/adverse effects , Animals , Female , Flow Cytometry , Humans , Immunosuppressive Agents/therapeutic use , Kupffer Cells/physiology , Male , Methicillin-Resistant Staphylococcus aureus , Mice , Middle Aged , Organ Transplantation/methods , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism , Retrospective Studies , Tacrolimus/therapeutic use
5.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409226

ABSTRACT

There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbß3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet-neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet-monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.


Subject(s)
COVID-19 , Thrombosis , Blood Platelets/pathology , Hemostasis , Humans , Immunity, Innate , Inflammation/pathology , Neutrophils/pathology , Platelet Activation , Thromboinflammation , Thrombosis/pathology
6.
Platelets ; 32(3): 314-324, 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-32896192

ABSTRACT

Platelets are increasingly being recognized for playing roles beyond thrombosis and hemostasis. Today we know that they mediate inflammation by direct interactions with innate immune cells or secretion of cytokines/chemokines. Here we review their interactions with neutrophils and monocytes/macrophages in infection and sepsis, stroke, myocardial infarction and venous thromboembolism. We discuss new roles for platelet surface receptors like GPVI or GPIb and also look at platelet contributions to the formation of neutrophil extracellular traps (NETs) as well as to deep vein thrombosis during infection, e.g. in COVID-19 patients.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Myocardial Infarction/immunology , Neutrophils/immunology , Sepsis/immunology , Stroke/immunology , Venous Thromboembolism/immunology , Blood Platelets/pathology , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cell Communication/genetics , Cell Communication/immunology , Cytokines/genetics , Cytokines/immunology , Extracellular Traps/genetics , Extracellular Traps/immunology , Gene Expression Regulation , Humans , Inflammation , Macrophages/immunology , Macrophages/pathology , Monocytes/immunology , Monocytes/pathology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Neutrophils/pathology , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/immunology , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/immunology , Sepsis/genetics , Sepsis/pathology , Stroke/genetics , Stroke/pathology , Venous Thromboembolism/genetics , Venous Thromboembolism/pathology
7.
Semin Immunol ; 28(6): 536-545, 2016 12.
Article in English | MEDLINE | ID: mdl-27769639

ABSTRACT

The primary function of platelets is to patrol the vasculature and seal vessel breaches to limit blood loss. However, it is becoming increasingly clear that they also contribute to pathophysiological conditions like thrombosis, atherosclerosis, stroke and infection. Severe sepsis is a devastating disease that claims hundreds of thousands of lives every year in North America and is a major burden to the public health system. Platelet surface receptors like GPIb, αIIbß3, TLR2 and TLR4 are involved in direct platelet-bacteria interactions. Plasma proteins like fibrinogen and vWF enable indirect interactions. Furthermore, platelet granules contain a plethora of proteins that modulate the immune response as well as microbicidal agents which can directly lyse bacteria. Bacterial toxins are potent platelet activators and can cause intravascular platelet aggregation. Platelets contribute to the antibacterial response of the host involving Kupffer cells, neutrophils and the complement system. In this review we summarize the current knowledge about platelet-bacteria interactions and highlight recent advances in the field.


Subject(s)
Blood Platelets/immunology , Blood Platelets/metabolism , Infections/etiology , Infections/metabolism , Animals , Bacterial Toxins/immunology , Bacterial Toxins/metabolism , Cell Communication , Cytoplasmic Granules/metabolism , Host-Pathogen Interactions/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Platelet Activation/immunology , Platelet Membrane Glycoproteins/immunology , Platelet Membrane Glycoproteins/metabolism , Sepsis/etiology , Sepsis/metabolism , Signal Transduction
8.
Blood ; 129(12): 1702-1706, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28077416

ABSTRACT

Platelets maintain hemostasis after injury, but also during inflammation. Recent studies have shown that platelets prevent inflammatory bleeding through (hem) immunoreceptor tyrosine-based activation motif-dependent mechanisms irrespective of aggregation during skin and lung inflammation. Although the exact mechanisms underlying this process remain unknown, it was speculated that mediators released from platelet granules might be involved. Maintaining cerebral hemostasis during stroke treatment is of high clinical relevance because hemorrhage may aggravate the disease state and increase mortality. Although it was shown that platelets help maintain hemostasis in the ischemic brain, their exact contribution remains ill defined. Here we show that Unc13d-/- /Nbeal2-/- mice, which lack platelet α- and dense-granule secretion, show no signs of hemorrhage in models of skin or lung inflammation. In stark contrast, lack of platelet granule release resulted in impaired hemostasis in the ischemic brain after transient middle cerebral artery occlusion leading to increased intracranial hemorrhage and mortality. Our results reveal for the first time that platelet granule constituents are essential for maintenance of hemostasis during thrombo-inflammatory brain infarction but not experimental inflammation of the skin or lung, thereby uncovering vascular bed-specific differences in the prevention of inflammatory bleeding.


Subject(s)
Blood Platelets/metabolism , Brain Ischemia/pathology , Cerebral Hemorrhage/prevention & control , Animals , Brain Ischemia/blood , Cerebral Hemorrhage/blood , Hemorrhage/pathology , Hemostasis , Infarction, Middle Cerebral Artery , Inflammation/blood , Inflammation/pathology , Lung/pathology , Mice , Secretory Vesicles/physiology , Skin/pathology
9.
J Immunol ; 199(8): 2948-2957, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28887433

ABSTRACT

The neurobeachin-like 2 protein (Nbeal2) belongs to the family of beige and Chediak-Higashi (BEACH) domain proteins. Loss-of-function mutations in the human NBEAL2 gene or Nbeal2 deficiency in mice cause gray platelet syndrome, a bleeding disorder characterized by macrothrombocytopenia, splenomegaly, and paucity of α-granules in megakaryocytes and platelets. We found that in mast cells, Nbeal2 regulates the activation of the Shp1-STAT5 signaling axis and the composition of the c-Kit/STAT signalosome. Furthermore, Nbeal2 mediates granule formation and restricts the expression of the transcription factors, IRF8, GATA2, and MITF as well as of the cell-cycle inhibitor p27, which are essential for mast cell differentiation, proliferation, and cytokine production. These data demonstrate the relevance of Nbeal2 in mast cells above and beyond granule biosynthesis.


Subject(s)
Blood Proteins/metabolism , Cytoplasmic Granules/metabolism , Gray Platelet Syndrome/genetics , Mast Cells/physiology , Megakaryocytes/physiology , Animals , Blood Proteins/genetics , Cell Cycle , Cells, Cultured , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Hemorrhage , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice , Mice, Knockout , Mutation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proto-Oncogene Proteins c-kit/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Splenomegaly , Thrombocytopenia
10.
Platelets ; 29(6): 549-555, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29446689

ABSTRACT

Platelets patrol the vasculature and adhere at sites of vascular damage after trauma to limit blood loss. In recent years, however, it has become clear that platelets also contribute to pathophysiologic processes such as thrombosis, atherosclerosis, stroke, sepsis and many more. An exciting new role for them is in non-classical hemostasis to prevent bleeding in the inflamed vasculature. Recent studies suggest that GPVI, CLEC-2, integrin αIIbß3 (GPIIb/IIIa), and the content of platelet α- and dense granules are important players in this process. This review summarizes the current knowledge about how platelets prevent vascular integrity during inflammation in the skin, lung, and the ischemic brain and their organ-specific role.


Subject(s)
Blood Platelets/immunology , Hemorrhage/etiology , Hemorrhage/pathology , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL