Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Phys Rev Lett ; 132(21): 218202, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856243

ABSTRACT

In this combined experimental and simulation study, we utilize bond-order topology to quantitatively match particle volume fraction in mechanically uniformly compressed colloidal suspensions with temperature in atomistic simulations. The obtained mapping temperature is above the dynamical glass transition temperature, indicating that the colloidal systems examined are structurally most like simulated undercooled liquids. Furthermore, the structural mapping procedure offers a unifying framework for quantifying relaxation in arrested colloidal systems.

2.
Phys Biol ; 17(6): 065007, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33048841

ABSTRACT

We argue that frequent sampling of the fraction of a priori non-symptomatic but infectious humans (either by random or cohort testing) significantly improves the management of the COVID-19 pandemic, when compared to intervention strategies relying on data from symptomatic cases only. This is because such sampling measures the incidence of the disease, the key variable controlled by restrictive measures, and thus anticipates the load on the healthcare system due to progression of the disease. The frequent testing of non-symptomatic infectiousness will (i) significantly improve the predictability of the pandemic, (ii) allow informed and optimized decisions on how to modify restrictive measures, with shorter delay times than the present ones, and (iii) enable the real-time assessment of the efficiency of new means to reduce transmission rates. These advantages are quantified by considering a feedback and control model of mitigation where the feedback is derived from the evolution of the daily measured prevalence. While the basic model we propose aggregates data for the entire population of a country such as Switzerland, we point out generalizations which account for hot spots which are analogous to Anderson-localized regions in the theory of diffusion in random media.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Contact Tracing , Coronavirus Infections/epidemiology , Models, Theoretical , Pandemics , Pneumonia, Viral/epidemiology , Asymptomatic Diseases , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Feedback , Humans , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2
3.
Phys Rev Lett ; 125(22): 225503, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33315460

ABSTRACT

Combining spatially resolved x-ray Laue diffraction with atomic-scale simulations, we observe how ion-irradiated tungsten undergoes a series of nonlinear structural transformations with increasing radiation exposure. Nanoscale defect-induced deformations accumulating above 0.02 displacements per atom (dpa) lead to highly fluctuating strains at ∼0.1 dpa, collapsing into a driven quasisteady structural state above ∼1 dpa. The driven asymptotic state is characterized by finely dispersed vacancy defects coexisting with an extended dislocation network and exhibits positive volumetric swelling, due to the creation of new crystallographic planes through self-interstitial coalescence, but negative lattice strain.

4.
Nanotechnology ; 29(26): 265205, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29620015

ABSTRACT

Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.

5.
Phys Rev Lett ; 112(10): 107201, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24679323

ABSTRACT

X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times.

6.
Nat Nanotechnol ; 15(11): 896-900, 2020 11.
Article in English | MEDLINE | ID: mdl-32958934

ABSTRACT

The driving force in materials to spontaneously form states with magnetic or electric order is of fundamental importance for basic research and device technology. The macroscopic properties and functionalities of these ferroics depend on the size, distribution and morphology of domains; that is, of regions across which such uniform order is maintained1. Typically, extrinsic factors such as strain profiles, grain size or annealing procedures control the size and shape of the domains2-5, whereas intrinsic parameters are often difficult to extract due to the complexity of a processed material. Here, we achieve this separation by building artificial crystals of planar nanomagnets that are coupled by well-defined, tuneable and competing magnetic interactions6-9. Aside from analysing the domain configurations, we uncover fundamental intrinsic correlations between the microscopic interactions establishing magnetically compensated order and the macroscopic manifestations of these interactions in basic physical properties. Experiment and simulations reveal how competing interactions can be exploited to control ferroic hallmark properties such as the size and morphology of domains, topological properties of domain walls or their thermal mobility.

7.
Nat Commun ; 10(1): 5006, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676748

ABSTRACT

Numerous disordered materials display a monotonous slowing down in their internal dynamics with age. In the case of metallic glasses, this general behavior across different temperatures and alloys has been used to establish an empirical universal superposition principle of time, waiting time, and temperature. Here we demonstrate that the application of a mechanical stress within the elastic regime breaks this universality. Using in-situ x-ray photon correlation spectroscopy (XPCS) experiments, we show that strong fluctuations between slow and fast structural dynamics exist, and that these generally exhibit larger relaxation times than in the unstressed case. On average, relaxation times increase with stress magnitude, and even preloading times of several days do not exhaust the structural dynamics under load. A model Lennard-Jones glass under shear deformation replicates many of the features revealed with XPCS, indicating that local and heterogeneous microplastic events can cause the strongly non-monotonous spectrum of relaxation times.

8.
Nat Nanotechnol ; 14(2): 141-144, 2019 02.
Article in English | MEDLINE | ID: mdl-30531991

ABSTRACT

Although ferromagnetism is known to be of enormous importance, the exploitation of materials with a compensated (for example, antiferromagnetic) arrangement of long-range ordered magnetic moments is still in its infancy. Antiferromagnetism is more robust against external perturbations, exhibits ultrafast responses of the spin system1 and is key to phenomena such as exchange bias2,3, magnetically induced ferroelectricity4 or certain magnetoresistance phenomena5. However, there is no conjugate field for the manipulation of antiferromagnetic order, hindering both its observation and direct manipulation. Only recently, direct poling of a particular antiferromagnet was achieved with spintronic approaches6. An interesting alternative to antiferromagnetism is ferrotoroidicity-a recently established fourth form of ferroic order7,8. This is defined as a vortex-like magnetic state with zero net magnetization, yet with a spontaneously occurring toroidal moment9. As a hallmark of ferroic order, there must be a conjugate field that can manipulate the order parameter. For ferrotoroidic materials, this is a toroidal field-a magnetic vortex field violating both space-inversion and time-reversal symmetry analogous to the toroidal moment10. However, the nature and generation of the toroidal field remain elusive for conventional crystalline systems. Here, we demonstrate the creation of an artificial crystal11,12 consisting of mesoscopic planar nanomagnets with a magneto-toroidal-ordered ground state. Effective toroidal fields of either sign are applied by scanning a magnetic tip over the crystal. Thus, we achieve local control over the orientation of the toroidal moment despite its zero net magnetization.

9.
Adv Mater ; 31(29): e1900561, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31161627

ABSTRACT

With a specific stimulus, shape-memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them relevant for applications in fields such as biomedicine, aerospace, and wearable electronics. Shape-memory in polymers and composites is usually achieved by exploiting a thermal transition to program a temporary shape and subsequently recover the original shape. This may be problematic for heat-sensitive environments, and when rapid and uniform heating is required. In this work, a soft magnetic shape-memory composite is produced by encasing liquid droplets of magneto-rheological fluid into a poly(dimethylsiloxane) matrix. Under the influence of a magnetic field, this material undergoes an exceptional stiffening transition, with an almost 30-fold increase in shear modulus. Exploiting this transition, fast and fully reversible magnetic shape-memory is demonstrated in three ways, by embossing, by simple shear, and by unconstrained 3D deformation. Using advanced synchrotron X-ray tomography techniques, the internal structure of the material is revealed, which can be correlated with the composite stiffening and shape-memory mechanism. This material concept, based on a simple emulsion process, can be extended to different fluids and elastomers, and can be manufactured with a wide range of methods.

10.
Nat Commun ; 9(1): 2850, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030427

ABSTRACT

Two-dimensional magnetic systems with continuous spin degrees of freedom exhibit a rich spectrum of thermal behaviour due to the strong competition between fluctuations and correlations. When such systems incorporate coupling via the anisotropic dipolar interaction, a discrete symmetry emerges, which can be spontaneously broken leading to a low-temperature ordered phase. However, the experimental realisation of such two-dimensional spin systems in crystalline materials is difficult since the dipolar coupling is usually much weaker than the exchange interaction. Here we realise two-dimensional magnetostatically coupled XY spin systems with nanoscale thermally active magnetic discs placed on square lattices. Using low-energy muon-spin relaxation and soft X-ray scattering, we observe correlated dynamics at the critical temperature and the emergence of static long-range order at low temperatures, which is compatible with theoretical predictions for dipolar-coupled XY spin systems. Furthermore, by modifying the sample design, we demonstrate the possibility to tune the collective magnetic behaviour in thermally active artificial spin systems with continuous degrees of freedom.

11.
Phys Rev Lett ; 99(14): 145505, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17930686

ABSTRACT

We demonstrate real-time resolved white beam Laue diffraction during compression of micron-sized focused ion beam milled single crystals Au pillars, revealing the dynamical correlation between microstructure and plasticity. The evolution of the Laue patterns of the Au pillars demonstrates the occurrence of crystal rotation and strengthening is explained by plasticity starting on a slip system that is geometrically not predicted but selected because of the character of the preexisting strain gradient.

12.
Nat Mater ; 5(2): 124-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16400330

ABSTRACT

As current experimental and simulation methods cannot determine the mobility of flat boundaries across the large misorientation phase space, we have developed a computational method for imposing an artificial driving force on boundaries. In a molecular dynamics simulation, this allows us to go beyond the inherent timescale restrictions of the technique and induce non-negligible motion in flat boundaries of arbitrary misorientation. For different series of symmetric boundaries, we find both expected and unexpected results. In general, mobility increases as the grain boundary plane deviates from (111), but high-coincidence and low-angle boundaries represent special cases. These results agree with and enrich experimental observations.

13.
Science ; 304(5668): 273-6, 2004 Apr 09.
Article in English | MEDLINE | ID: mdl-15073373

ABSTRACT

Plastic deformation in coarse-grained metals is governed by dislocation-mediated processes. These processes lead to the accumulation of a residual dislocation network, producing inhomogeneous strain and an irreversible broadening of the Bragg peaks in x-ray diffraction. We show that during plastic deformation of electrodeposited nanocrystalline nickel, the peak broadening is reversible upon unloading; hence, the deformation process does not build up a residual dislocation network. The results were obtained during in situ peak profile analysis using the Swiss Light Source. This in situ technique, based on well-known peak profile analysis methods, can be used to address the relationship between microstructure and mechanical properties in nanostructured materials.

SELECTION OF CITATIONS
SEARCH DETAIL