Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Neuroscience ; 148(1): 212-20, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17629409

ABSTRACT

BACKGROUND: 3,4-Methylenedioxymethamphetamine (MDMA) causes persistent decreases in brain 5-HT content and 5-HT transporter (SERT) binding, with no detectable changes in SERT protein. Such data suggest that MDMA impairs 5-HT transmission but leaves 5-HT nerve terminals intact. To further test this hypothesis, we carried out two types of experiments in rats exposed to high-dose MDMA. First, we examined the effects of MDMA on SERT binding and function using different in vitro assay conditions. Next, we treated rats with the 5-HT precursor, l-5-hydroxytryptophan (5-HTP), in an attempt to restore MDMA-induced depletions of 5-HT. METHODS: Rats received three i.p. injections of saline or MDMA (7.5 mg/kg), one injection every 2 h. Rats in one group were decapitated, and brain tissue was assayed for SERT binding and [(3)H]5-HT uptake under conditions of normal (100 or 126 mM) and low (20 mM) NaCl concentration. Rats from another group received saline or 5-hydroxytryptophan/benserazide (5-HTP-B), each drug at 50 mg/kg i.p., and were killed 2 h later. RESULTS: MDMA reduced SERT binding to 10% of control when assayed in 100 mM NaCl, but this reduction was only 55% of control in 20 mM NaCl. MDMA decreased immunoreactive 5-HT in caudate and hippocampus to about 35% of control. Administration of 5-HTP-B to MDMA-pretreated rats significantly increased the 5-HT signal toward normal levels in caudate (85% of control) and hippocampus (66% of control). CONCLUSION: 1) Following high-dose MDMA treatment sufficient to reduce SERT binding by 90%, a significant number of functionally intact 5-HT nerve terminals survive. 2) The degree of MDMA-induced decreases in SERT binding depends on the in vitro assay conditions. 3) 5-HTP-B restores brain 5-HT depleted by MDMA, suggesting that this approach might be clinically useful in abstinent MDMA users.


Subject(s)
5-Hydroxytryptophan/pharmacology , Brain Chemistry/drug effects , Brain/drug effects , N-Methyl-3,4-methylenedioxyamphetamine/antagonists & inhibitors , Serotonin/deficiency , Animals , Antidepressive Agents, Second-Generation/pharmacology , Binding, Competitive/drug effects , Binding, Competitive/physiology , Brain/metabolism , Brain Chemistry/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drug Interactions/physiology , Hallucinogens/antagonists & inhibitors , Hallucinogens/toxicity , Male , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Nerve Degeneration/chemically induced , Nerve Degeneration/drug therapy , Nerve Degeneration/physiopathology , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Radioligand Assay , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Recovery of Function/physiology , Serotonin Agents/pharmacology , Serotonin Agents/toxicity , Serotonin Plasma Membrane Transport Proteins/drug effects , Serotonin Plasma Membrane Transport Proteins/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
2.
Circulation ; 100(8): 869-75, 1999 Aug 24.
Article in English | MEDLINE | ID: mdl-10458725

ABSTRACT

BACKGROUND: Coadministration of phentermine and fenfluramine (phen/fen) effectively treats obesity and possibly addictive disorders. The association of fenfluramine and certain other anorexic agents with serious side effects, such as cardiac valvulopathy and primary pulmonary hypertension (PPH), limits the clinical utility of these drugs. Development of new medications that produce neurochemical effects like phen/fen without causing unwanted side effects would be a significant therapeutic breakthrough. METHODS AND RESULTS: We tested the hypothesis that fenfluramine (and other anorexic agents) might increase the risk of PPH through interactions with serotonin (5-HT) transporters. Because 5-HT transporter proteins in the lung and brain are identical, we examined, in rat brain, the effects of selected drugs on 5-HT efflux in vivo and monoamine transporters in vitro as a generalized index of transporter function. Our data show that drugs known or suspected to increase the risk of PPH (eg, aminorex, fenfluramine, and chlorphentermine) are 5-HT transporter substrates, whereas drugs that have not been shown to increase the risk of PPH are less potent in this regard. CONCLUSIONS: We speculate that medications that are 5-HT transporter substrates get translocated into pulmonary cells where, depending on the degree of drug retention, their intrinsic drug toxicity, and individual susceptibility, PPH could develop as a response to high levels of these drugs or metabolites. Emerging evidence suggests that it is possible to develop transporter substrates devoid of adverse side effects. Such medications could have therapeutic application in the management of obesity, drug dependence, depression, and other disorders.


Subject(s)
Aminorex/metabolism , Appetite Depressants/metabolism , Carrier Proteins/metabolism , Chlorphentermine/metabolism , Fenfluramine/metabolism , Hypertension, Pulmonary/chemically induced , Membrane Glycoproteins/metabolism , Membrane Transport Proteins , Nerve Tissue Proteins , Serotonin/metabolism , Animals , Brain/metabolism , Dopamine/metabolism , Male , Microdialysis , Rats , Rats, Sprague-Dawley , Serotonin Plasma Membrane Transport Proteins
3.
Neuropsychopharmacology ; 24(5): 492-501, 2001 May.
Article in English | MEDLINE | ID: mdl-11282249

ABSTRACT

Serotonin (5-HT) releasing agents such as d-fenfluramine are known to cause long-term depletion of forebrain 5-HT in animals, but the mechanism of this effect is unknown. In the present study, we examined the relationship between drug-induced 5-HT release and long-term 5-HT depletion in rat brain. The 5-HT-releasing actions of d-fenfluramine and a non-amphetamine 5-HT drug, 1-(m-chlorophenyl)piperazine (mCPP), were compared using in vivo microdialysis in the nucleus accumbens. The ability of d-fenfluramine and mCPP to interact with 5-HT transporters was tested using in vitro assays for [3H]5-HT uptake and radioligand binding. Local infusion of d-fenfluramine or mCPP (1-100 microM) increased extracellular 5-HT, with elevations in dopamine occurring at high doses. Intravenous injection of either drug (1-10 micromol/kg) produced dose-related increases in 5-HT without affecting dopamine. d-Fenfluramine and mCPP exhibited similar potency in their ability to stimulate 5-HT efflux in vivo and interact with 5-HT transporters in vitro. When rats received high-dose d-fenfluramine or mCPP (10 or 30 micromol/kg, i.p., every 2 h, 4 doses), only d-fenfluramine-treated rats displayed long-term 5-HT depletions. Thus, mCPP is a 5-HT releaser that does not appear to cause 5-HT depletion. Our data support the notion that 5-HT release per se may not be sufficient to produce the long-term 5-HT deficits associated with d-fenfluramine and other amphetamines.


Subject(s)
Brain/drug effects , Membrane Transport Proteins , Nerve Tissue Proteins , Neurons/drug effects , Piperazines/pharmacology , Serotonin/deficiency , Serotonin/metabolism , Animals , Brain/metabolism , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Caudate Nucleus/drug effects , Caudate Nucleus/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins , Dose-Response Relationship, Drug , Fenfluramine/pharmacology , Hydroxyindoleacetic Acid/metabolism , Male , Membrane Glycoproteins/drug effects , Membrane Glycoproteins/metabolism , Microdialysis , Neurons/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Radioligand Assay , Rats , Rats, Sprague-Dawley , Serotonin/pharmacokinetics , Serotonin Plasma Membrane Transport Proteins , Serotonin Receptor Agonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Time Factors , Tritium/pharmacokinetics
4.
J Med Chem ; 44(23): 3937-45, 2001 Nov 08.
Article in English | MEDLINE | ID: mdl-11689080

ABSTRACT

We have prepared azabicyclo[3.2.1] derivatives (C-3-substituted tropanes) that bind with high affinity to the dopamine transporter and inhibit dopamine reuptake. Within the series, 3-[2-[bis-(4-fluorophenyl)methoxy]ethylidene]-8-methyl-8-azabicyclo[3.2.1]octane (8) was found to have the highest affinity and selectivity for the dopamine transporter. These azabicyclo[3.2.1] (bridged piperidine) series of compounds differ from the well-known benztropines by a 2-carbon spacer between C-3 and a diarylmethoxy moiety. Interestingly, these new compounds demonstrated a much lower affinity for the muscarinic-1 site, at least a 100-fold decrease compared to benztropine. Replacing N-methyl with N-phenylpropyl in two of the compounds resulted in a 3-10-fold increase in binding affinity for the dopamine transporter. However, those compounds lost selectivity for the dopamine transporter over the serotonin transporter. Replacement of the ether oxygen in the diarylmethoxy moiety with a nitrogen atom gave relatively inactive amines, indicating the important role which is played by the ether oxygen in transporter binding. Reduction of the C-3 double bond in 8 gave 3 alpha-substituted tropanes, as shown by X-ray crystallographic analyses of 11, 12, and 19. The 3 alpha-substituted tropanes had lower affinity and less selectivity than the comparable unsaturated ligands.


Subject(s)
Dopamine Uptake Inhibitors/chemical synthesis , Dopamine/metabolism , Membrane Transport Proteins/metabolism , Nerve Tissue Proteins , Piperazines/chemistry , Tropanes/chemical synthesis , Animals , Brain/metabolism , Carrier Proteins/metabolism , Crystallography, X-Ray , Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors/chemistry , Dopamine Uptake Inhibitors/metabolism , In Vitro Techniques , Male , Membrane Glycoproteins/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M1 , Receptors, Muscarinic/metabolism , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins , Structure-Activity Relationship , Tropanes/chemistry , Tropanes/metabolism
5.
J Med Chem ; 40(5): 705-16, 1997 Feb 28.
Article in English | MEDLINE | ID: mdl-9057857

ABSTRACT

A new series of heteroaromatic GBR 12935 [1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)-piperazine] (I) and GBR 12909 [1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine] (2) analogs was synthesized and evaluated as dopamine transporter (DAT) ligands. Analogs 5-16, in which the benzene ring in the phenylpropyl side chain of the GBR molecule had been replaced with a thiophene, furan, or pyridine ring, exhibited high affinity and selectivity for the DAT vs serotonin transporter (SERT) and stimulated locomotor activity in rats in a manner similar to the parent compound 2. In cocaine and food self-administration studies in rhesus monkeys, both thiophene-containing (6 and 8) and pyridine-containing (14 and 16) derivatives displayed potency comparable to 2 in decreasing the cocaine-maintained responding at the doses tested (0.8, 1.7, and 3 mg/kg). However, these compounds did not produce the degree of separation between food- and cocaine-maintained responding that was seen with 2. Among the bicyclic fused-ring congeners 17-38, the indole-containing analog of 2, 22, showed the greatest affinity for binding to the DAT, with IC50 = 0.7 nM, whereas the corresponding indole-containing derivative of 1, 21, displayed the highest selectivity (over 600-fold) at this site vs the SERT site.


Subject(s)
Carrier Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Membrane Transport Proteins , Nerve Tissue Proteins , Piperazines/pharmacology , Animals , Cocaine/administration & dosage , Cocaine/analogs & derivatives , Cocaine/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors/chemical synthesis , Dopamine Uptake Inhibitors/chemistry , Dopamine Uptake Inhibitors/metabolism , Feeding Behavior/drug effects , Ligands , Macaca mulatta , Magnetic Resonance Spectroscopy , Membrane Glycoproteins/metabolism , Molecular Structure , Motor Activity/drug effects , Pentazocine/metabolism , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/metabolism , Rats , Serotonin Plasma Membrane Transport Proteins , Structure-Activity Relationship
6.
J Med Chem ; 42(24): 5029-42, 1999 Dec 02.
Article in English | MEDLINE | ID: mdl-10585212

ABSTRACT

An investigation into the preparation of potential extended-release cocaine-abuse therapeutic agents afforded a series of compounds related to 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (1a) and 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (1b) (GBR 12935 and GBR 12909, respectively), which were designed, synthesized, and evaluated for their ability to bind to the dopamine transporter (DAT) and to inhibit the uptake of [(3)H]-labeled dopamine (DA). The addition of hydroxy and methoxy substituents to the benzene ring on the phenylpropyl moiety of 1a-1d resulted in a series of potent and selective ligands for the DAT (analogues 5-28). The hydroxyl groups were included to incorporate a medium-chain carboxylic acid ester into the molecules, to form oil-soluble prodrugs, amenable to "depot" injection techniques. The introduction of an oxygen-containing functionality to the propyl side chain provided ketones 29 and 30, which demonstrated greatly reduced affinity for the DAT and decreased potency in inhibiting the uptake of [(3)H]DA, and benzylic alcohols 31-36, which were highly potent and selective at binding to the DAT and inhibiting [(3)H]DA uptake. The enantiomers of 32 (34 and 36) were practically identical in biological testing. Compounds 1b, 32, 34, and 36 all demonstrated the ability to decrease cocaine-maintained responding in monkeys without affecting behaviors maintained by food, with 34 and 36 equipotent to each other and both more potent in behavioral tests than the parent compound 1b. Intramuscular injections of compound 41 (the decanoate ester of racemate 32) eliminated cocaine-maintained behavior for about a month following one single injection, without affecting food-maintained behavior. The identification of analogues 32, 34, and 36, thus, provides three potential candidates for esterification and formulation as extended-release cocaine-abuse therapeutic agents.


Subject(s)
Cocaine-Related Disorders/drug therapy , Dopamine Uptake Inhibitors/chemical synthesis , Membrane Glycoproteins , Membrane Transport Proteins , Nerve Tissue Proteins , Piperazines/chemistry , Piperazines/chemical synthesis , Animals , Carrier Proteins/metabolism , Delayed-Action Preparations , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins , Hydroxylation , Ligands , Macaca mulatta , Male , Methylation , Molecular Structure , Oxygen/chemistry , Piperazines/metabolism , Piperazines/pharmacology , Rats , Structure-Activity Relationship , Tritium
7.
J Med Chem ; 43(16): 3193-6, 2000 Aug 10.
Article in English | MEDLINE | ID: mdl-10956228

ABSTRACT

Potent, selective, and efficacious delta-opioid receptor agonists such as (+)-4-[(alphaR)-alpha-(2S,5R)-4-allyl-2, 5-dimethyl-1-piperazinyl-3-methoxybenzyl]-N,N-diethylbenzamide [SNC80, (+)-2] have been found to be useful tools for exploring the structural requirements which are necessary for ligands which interact with the delta-receptor. To determine the necessity for the 4-allyl moiety in (+)-2, this substituent was replaced with a variety of 4-alkyl, 4-arylalkyl, and 4-alkenyl substituents. The corresponding enantiomers of these compounds were also synthesized. The binding affinities for the mu-, delta-, and kappa-opioid receptors and efficacies in the functional GTPgammaS binding assay were determined for the (+)-2 related compounds and their enantiomers. The 4-crotyl analogue was found to have similar delta-receptor affinity and efficacy as (+)-2, but the 4-cyclopropylmethyl analogue, in the functional assay, appeared to be a partial agonist with little antagonist activity.


Subject(s)
Benzamides/chemical synthesis , Piperazines/chemical synthesis , Receptors, Opioid, delta/agonists , Animals , Benzamides/chemistry , Benzamides/pharmacology , Binding, Competitive , Brain/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guinea Pigs , In Vitro Techniques , Ligands , Narcotic Antagonists/chemical synthesis , Narcotic Antagonists/chemistry , Narcotic Antagonists/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Rats , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Stereoisomerism , Structure-Activity Relationship
8.
J Med Chem ; 43(25): 4840-9, 2000 Dec 14.
Article in English | MEDLINE | ID: mdl-11123994

ABSTRACT

A series of analogues related to 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (2) and 1-Āæ2-[bis(4-fluorophenyl)methoxy]ethylĀæ-4-(3-phenylpropyl)piperazine (3) (GBR 12935 and GBR 12909, respectively), in which the piperazine moiety was replaced by bridged piperazines for structural rigidity, has been designed, synthesized, and evaluated for their ability to bind to the dopamine transporter (DAT) and to inhibit the uptake of (3)H-labeled dopamine (DA). The binding data indicated that compounds 7 and 11, the N-methyl- and N-propylphenyl-3,8-diaza[3.2. 1]bicyclooctane analogues of 3, showed high affinity for the DAT (IC(50) = 8.0 and 8.2 nM, respectively), and 7 had high selectivity at the DAT relative to the serotonin transporter (SERT) (88- and 93-fold for binding and reuptake, respectively). They also displayed linear activity in DA uptake inhibition, possessing a similar binding and reuptake inhibition profile to 3. The N-indolylmethyl analogue 16 showed the highest affinity (IC(50) = 1.4 nM) of the series, with a 6-fold increase over its corresponding N-phenypropyl derivative 11. Interestingly, this compound exhibited a high ratio (29-fold) of IC(50) for the inhibition of DA reuptake versus binding to the DAT. Replacing the piperazine moiety of 2 and 3 with (1S, 4S)-2,5-diazabicyclo[2.2.1]heptane resulted in compounds 23-26, which showed moderate to poor affinity (IC(50) = 127-1170 nM) for the DAT. Substitution of the homopiperazine moiety of 4 with a more rigid 3,9-diazabicyclo[4.2.1]nonane gave compounds 28-33. However, the binding data showed that compound 32 displayed a 10-fold decrease in affinity at the DAT and a 100-fold decrease in selectivity at the DAT relative to the SERT compared to its corresponding homopiperazine compound 4.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Carrier Proteins/metabolism , Dopamine Uptake Inhibitors/chemical synthesis , Dopamine/metabolism , Heterocyclic Compounds, Bridged-Ring/chemical synthesis , Indoles/chemical synthesis , Membrane Transport Proteins , Nerve Tissue Proteins , Piperazines/chemical synthesis , Animals , Brain/metabolism , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors/chemistry , Dopamine Uptake Inhibitors/metabolism , Dopamine Uptake Inhibitors/pharmacology , Heterocyclic Compounds, Bridged-Ring/chemistry , Heterocyclic Compounds, Bridged-Ring/metabolism , Heterocyclic Compounds, Bridged-Ring/pharmacology , In Vitro Techniques , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Membrane Glycoproteins/metabolism , Piperazines/chemistry , Piperazines/metabolism , Piperazines/pharmacology , Radioligand Assay , Rats , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins , Structure-Activity Relationship , Synaptosomes/metabolism
9.
J Med Chem ; 43(25): 4868-76, 2000 Dec 14.
Article in English | MEDLINE | ID: mdl-11123996

ABSTRACT

A series of methoxy-containing derivatives of indatraline 13a-f and 17 were synthesized, and their binding affinities for the dopamine, serotonin, and norepinephrine transporter binding sites were determined. Introduction of a methoxy group to indatraline affected its affinity and selectivity greatly. Except for the 4-methoxy derivative 13a,which had the same high affinity at the dopamine transporter binding site as indatraline, the other methoxy-containing analogues (13b-f and 17) exhibited lower affinity than indatraline for the three transporter binding sites. However, some of the analogues were more selective than indatraline, and the 6-methoxy derivative 13c displayed the highest affinity for both the serotonin and norepinephrine transporters. This compound retained reasonable affinity for the dopamine transporter and is a promising template for the development of a long-acting inhibitor of monoamine transporters. Such inhibitors have potential as medications for treatment, as a substitution medication, or for prevention of the abuse of methamphetamine-like stimulants.


Subject(s)
Carrier Proteins/metabolism , Dopamine/metabolism , Indans/chemical synthesis , Membrane Glycoproteins/metabolism , Membrane Transport Proteins , Methylamines/chemical synthesis , Nerve Tissue Proteins , Neurotransmitter Uptake Inhibitors/chemical synthesis , Norepinephrine/metabolism , Serotonin/metabolism , Symporters , Animals , Binding, Competitive , Crystallography, X-Ray , Dopamine Plasma Membrane Transport Proteins , Drug Design , Indans/chemistry , Indans/metabolism , Methylamines/chemistry , Methylamines/metabolism , Neurotransmitter Uptake Inhibitors/chemistry , Neurotransmitter Uptake Inhibitors/metabolism , Norepinephrine Plasma Membrane Transport Proteins , Radioligand Assay , Serotonin Plasma Membrane Transport Proteins , Structure-Activity Relationship
10.
J Med Chem ; 42(18): 3527-38, 1999 Sep 09.
Article in English | MEDLINE | ID: mdl-10479286

ABSTRACT

A series of pyrido- and pyrimidomorphinans (6a-h and 7a-g) were synthesized from naltrexone and evaluated for binding and biological activity at the opioid receptors. The unsubstituted pyridine 6a displayed high affinities at opioid delta, mu, and kappa receptors with K(i) values of 0.78, 1.5, and 8.8 nM, respectively. Compound 6a was devoid of agonist activity in the mouse vas deferens (MVD) and guinea pig ileum (GPI) preparations but was found to display moderate to weak antagonist activity in the MVD and GPI with K(e) values of 37 and 164 nM, respectively. The pyrimidomorphinans in general displayed lower binding potencies and delta receptor binding selectivities than their pyridine counterparts. Incorporation of aryl groups as putative delta address mimics on the pyrido- and pyrimidomorphinan framework gave ligands with significant differences in binding affinity and intrinsic activity. Attachment of a phenyl group at the 4'-position of 6a or the equivalent 6'-position of 7a led to dramatic reduction in binding potencies at all the three opioid receptors, indicating the existence of a somewhat similar steric constraint at the ligand binding sites of delta, mu, and kappa receptors. In contrast, the introduction of a phenyl group at the 5'-position of 6a did not cause any reduction in the binding affinity at the delta receptor. In comparison to the unsubstituted pyridine 6a, the 5'-phenylpyridine 6c showed improvements in mu/delta and kappa/delta binding selectivity ratios as well as in the delta antagonist potency in the MVD. Interestingly, introduction of a chlorine atom at the para position of the pendant 5'-phenyl group of 6c not only provided further improvements in delta antagonist potency in the MVD but also shifted the intrinsic activity profile of 6c from an antagonist to that of a mu agonist in the GPI. Compound 6d thus possesses the characteristics of a nonpeptide mu agonist/delta antagonist ligand with high affinity at the delta receptor (K(i) = 2.2 nM), high antagonist potency in the MVD (K(e) = 0.66 nM), and moderate agonist potency in the GPI (IC(50) = 163 nM). Antinociceptive evaluations in mice showed that intracerebroventricular (icv) injections of 6d produced a partial agonist effect in the 55 degrees C tail-flick assay and a full agonist effect in the acetic acid writhing assay (A(50) = 7.5 nmol). No signs of overt toxicity were observed with this compound in the dose ranges tested. Moreover, repeated icv injections of an A(90) dose did not induce any significant development of antinociceptive tolerance in the acetic acid writhing assay. The potent delta antagonist component of this mixed mu agonist/delta antagonist may be responsible for the diminished propensity to produce tolerance that this compound displays.


Subject(s)
Morphinans/chemical synthesis , Morphine/pharmacology , Naltrexone/chemistry , Receptors, Opioid/metabolism , Analgesics/chemical synthesis , Analgesics/pharmacology , Animals , Binding, Competitive , Brain/drug effects , Enkephalin, Ala(2)-MePhe(4)-Gly(5)- , Enkephalin, Leucine-2-Alanine/metabolism , Enkephalins/metabolism , Guinea Pigs , Ileum/drug effects , Male , Mice , Mice, Inbred Strains , Morphinans/pharmacology , Muscle Contraction/drug effects , Protein Binding , Rats , Vas Deferens/drug effects
11.
J Med Chem ; 41(21): 4143-9, 1998 Oct 08.
Article in English | MEDLINE | ID: mdl-9767649

ABSTRACT

The inhibition of radioligand binding and [35S]GTPgammaS functional assay data for N-methyl- and N-phenethyl-9beta-methyl-5-(3-hydroxyphenyl)morphans (5b and 5c) show that these compounds are pure antagonists at the micro, delta, and kappa opioid receptors. Since 5b and 5c have the 5-(3-hydroxyphenyl) group locked in a conformation comparable to an equatorial group of a piperidine chair conformation, this information provides very strong evidence that opioid antagonists can interact with opioid receptors in this conformation. In addition, it suggests that the trans-3, 4-dimethyl-4-(3-hydroxyphenyl)piperidine class of antagonist operates via a phenyl equatorial piperidine chair conformation. Importantly, the close relationship between the 4-(3-hydroxyphenyl)piperidines and 5-(3-hydroxyphenyl)morphan antagonists shows that the latter class of compound provides a rigid platform on which to build a novel series of opioid antagonists.


Subject(s)
Morphinans/chemical synthesis , Narcotic Antagonists , Animals , Crystallography, X-Ray , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guinea Pigs , In Vitro Techniques , Molecular Conformation , Morphinans/chemistry , Morphinans/metabolism , Morphinans/pharmacology , Putamen/drug effects , Putamen/metabolism , Radioligand Assay , Rats , Receptors, Opioid/metabolism , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship
12.
J Med Chem ; 44(6): 972-87, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11300879

ABSTRACT

A study of the effect of transposition of the internal nitrogen atom for the adjacent benzylic carbon atom in delta-selective agonists such as BW373U86 (1) and SNC-80 (2) has been undertaken. It was shown that high-affinity, fully efficacious, and delta opioid receptor-selective compounds can be obtained from this transposition. In addition to the N,N-diethylamido group needed as the delta address, the structural features identified to promote delta receptor affinity in the set of compounds studied included a cis relative stereochemistry between the 3- and 4-substituents in the piperidine ring, a trans-crotyl or allyl substituent on the basic nitrogen, the lack of a 2-methyl group in the piperidine ring, and either no substitution or hydroxyl substitution in the aryl ring not substituted with the N,N-diethylamido group. Structural features found to be important for mu affinity include hydroxyl substitution in the aryl ring, the presence of a 2-methyl group in a cis relative relationship to the 4-amino group as well as N-substituents such as cyclopropylmethyl. It was also determined that mu receptor affinity could be increased while maintaining delta receptor affinity, especially when hydroxyl-substituted compounds are considered. Additionally, it was discovered that the somewhat lower mu/delta selectivities observed for the piperidine compounds relative to the piperazine-based ligands appear to arise as a consequence of the carbon-nitrogen transposition which imparts an overall lower delta and higher mu affinity to the piperidine-based ligands. This higher affinity for the mu receptor, apparently intrinsic to the piperidine-based compounds, suggests that ligands of this class will more easily be converted to mu/delta combination agonists compared to the piperazine ligands such as 1. This is particularly important since analogues of 1, which show both mu- and delta-type activity, are now recognized as important for their strong analgesia and cross-canceling of many of the side effects found in agonists operating exclusively from either the delta or mu opioid receptor.


Subject(s)
Benzamides/chemistry , Piperazines/chemistry , Piperidines/chemistry , Receptors, Opioid, delta/metabolism , Animals , Benzamides/metabolism , Brain/metabolism , Crystallography, X-Ray , Guinea Pigs , In Vitro Techniques , Ligands , Piperazines/metabolism , Piperidines/metabolism , Radioligand Assay , Rats , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Stereoisomerism , Structure-Activity Relationship
13.
J Med Chem ; 41(11): 1980-90, 1998 May 21.
Article in English | MEDLINE | ID: mdl-9599247

ABSTRACT

A study of the binding site requirements associated with the N-substituent of (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) derivatives was undertaken using a set of rigid vs flexible N-substituents. The study showed that compounds 7-9 bearing the trans-cinnamyl N-substituent most closely reproduced the potency at the opioid receptor of the flexible N-propylphenyl or N-propylcyclohexyl analogues previously reported. Neither the N-substituted cis-cinnamyl nor the cis-phenylcyclopropylmethyl compounds 10 and 11, respectively, showed high affinity for the opioid receptor. However, the N-trans-phenylcyclopropylmethyl compound 12 closely approximated the affinity of compounds 7-9. Additionally, we found that free rotation of the phenyl ring is necessary for high affinity binding and mu receptor subtype selectivity as the planar N-substituted thianaphthylmethyl and benzofuranylmethyl compounds 13 and 14 had significantly lower binding affinities. Altogether, these findings suggest that the high binding affinity, selectivity, and antagonist potency of N-propylphenyl or N-propylcyclohexyl analogues of (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) are achieved via a conformation wherein the connecting chain of the N-substituents is extended away from piperidine nitrogen with the appended ring system rotated out-of-plane relative to the connecting chain atoms. This conformation is quite similar to that observed in the solid state for 5, as determined by single crystal X-ray analysis. Additionally, it was found that, unlike naltrexone, N-substituents bearing secondary carbons attached directly to the piperidine nitrogen of 4 suffer dramatic losses of potency vs analogues not substituted in this manner. Using a functional assay which measured stimulation or inhibition of [35S]GTP-gamma-S binding, we show that the trans-cinnamyl analogues of (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) retain opioid pure antagonist activity and possess picomolar antagonist potency at the mu receptor.


Subject(s)
Narcotic Antagonists , Piperidines , Receptors, Opioid, mu/antagonists & inhibitors , Animals , Brain/drug effects , Brain/metabolism , Crystallography, X-Ray , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guinea Pigs , In Vitro Techniques , Molecular Conformation , Narcotic Antagonists/chemical synthesis , Narcotic Antagonists/chemistry , Narcotic Antagonists/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Rats , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, kappa/antagonists & inhibitors
14.
J Med Chem ; 39(24): 4704-16, 1996 Nov 22.
Article in English | MEDLINE | ID: mdl-8941383

ABSTRACT

The design, synthesis, and biological evaluation of compounds related to the dopamine (DA) uptake inhibitors: 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (1) and 1-[2-[bis-(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (2) (GBR 12395 and GBR 12909, respectively), directed toward the development and identification of new ligands interacting with high potency and selectivity at the dopamine transporter (DAT) is reported. The substitution of the piperazine ring in the GBR structure with other diamine moieties resulted in the retention of the high affinity of new ligands for the DAT. Some of the modified GBR analogs (e.g. 8, 10, (-)-49, or (-)-50) displayed substantially higher selectivity (4736- to 693-fold) for the dopamine (DA) versus the serotonin (5HT) reuptake site than the parent compounds. The bis(p-fluoro) substitution in the (diphenylmethoxy)ethyl fragment slightly increased the affinity of the ligands at the DA reuptake site but reduced their selectivity at this site (e.g. 9 and 8, 11 and 10, or 17 and 16, respectively). Congeners, such as the series of monosubstituted and symmetrically disubstituted piperazines and trans-2,5-dimethylpiperazines, which lack the (diphenylmethoxy)ethyl substituent lost the affinity for the DAT yet exhibited very high potency for binding to the sigma receptors (e.g.28). The chiral pyrrolidine derivatives of 1, (-)-49, and (+)-49, exhibited an enantioselectivity ratio of 181 and 146 for the inhibition of DA reuptake and binding to the DAT, respectively.


Subject(s)
Dopamine Uptake Inhibitors/chemical synthesis , Membrane Glycoproteins , Membrane Transport Proteins , Nerve Tissue Proteins , Piperazines/chemical synthesis , Animals , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Cocaine/pharmacology , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors/pharmacology , Drug Design , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Conformation , Molecular Structure , Piperazines/metabolism , Piperazines/pharmacology , Rats , Receptors, Drug/metabolism , Serotonin/metabolism , Substance-Related Disorders/therapy
15.
J Med Chem ; 42(26): 5455-63, 1999 Dec 30.
Article in English | MEDLINE | ID: mdl-10639287

ABSTRACT

We recently reported (+)-4-Āæ(alphaR)-alpha-Āæ(2S,5R)-4-allyl-2, 5-dimethyl-1-piperazinylĀæ-3-methoxybenzyl-N,N-diethylbenzamide (1b, SNC80) as a novel nonpeptidic delta receptor agonist and explored the structure-activity relationships (SAR) of a series of related derivatives. We have found that delta binding activities and selectivity showed little change when the 3-methoxy group in 1b was removed or replaced by the other substituents, whereas the N, N-diethylbenzamide group is important for interaction with the delta receptor. Extensive modification of the piperazine nucleus led to the synthesis of a new series of N, N-diethyl(alpha-piperazinylbenzyl)benzamides (2, 3a-e), N, N-diethyl(alpha-piperidinyl or piperidinylidenebenzyl)benzamides (4a, 5a-c, 6a-b), and related derivatives (4b, 7a-c). Several compounds (2, 3a, 3e, 6a) strongly bound to the delta receptor with K(i) values in the low nanomolar range. On the other hand, the binding affinities of these compounds for the mu and kappa receptors were negligible, indicating excellent delta opioid receptor subtype selectivity. The two nitrogen atoms on the piperazine nucleus showed different SAR in the interaction of this series of compounds at the delta receptor. Nitrogen N(4) appears to be an important structural element and is essential for electrostatic interaction, while N(1) seems to be unnecessary for recognition at the delta receptor.


Subject(s)
Piperazines/chemical synthesis , Piperazines/pharmacology , Receptors, Opioid, delta/drug effects , Animals , Brain/drug effects , Brain/metabolism , Guinea Pigs , In Vitro Techniques , Ligands , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Mice , Mice, Inbred ICR , Molecular Probes , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Piperazines/metabolism , Radioligand Assay , Rats , Receptors, Opioid, delta/metabolism , Receptors, Opioid, delta/physiology , Structure-Activity Relationship
16.
J Med Chem ; 41(26): 5188-97, 1998 Dec 17.
Article in English | MEDLINE | ID: mdl-9857089

ABSTRACT

A three-component library of compounds was prepared in parallel using multiple simultaneous solution-phase synthetic methodology. The compounds were biased toward opioid receptor antagonist activity by incorporating (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (a potent, nonselective opioid pure antagonist) as one of the monomers. The other two monomers, which included N-substituted or unsubstituted Boc-protected amino acids and a range of substituted aryl carboxylic acids, were selected to add chemical diversity. Screening of these compounds in competitive binding experiments with the kappa opioid receptor selective ligand [3H]U69,593 led to the discovery of a novel kappa opioid receptor selective ligand, N-Āæ(2'S)-[3-(4-hydroxyphenyl)propanamido]-3'-methylbutylĀæ-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (8, RTI-5989-29). Additional structure-activity relationship studies suggested that 8 possesses lipophilic and hydrogen-bonding sites that are important to its opioid receptor potency and selectivity. These sites appear to exist predominantly within the kappa receptor since the selectivity arises from a 530-fold loss of affinity of 8 for the mu receptor and an 18-fold increase in affinity for the kappa receptor relative to the mu-selective ligand, (+)-N-[trans-4-phenyl-2-butenyl]-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (5a). The degree of selectivity observed in the radioligand binding experiments was not observed in the functional assay. According to its ability to inhibit agonist stimulated binding of [35S]GTPgammaS at all three opioid receptors, compound 8 behaves as a mu/kappa opioid receptor pure antagonist with negligible affinity for the delta receptor.


Subject(s)
Lactones/chemical synthesis , Narcotic Antagonists/chemical synthesis , Piperidines/chemical synthesis , Receptors, Opioid, kappa/antagonists & inhibitors , Animals , Binding, Competitive , Drug Evaluation, Preclinical , Guinea Pigs , In Vitro Techniques , Lactones/chemistry , Lactones/isolation & purification , Lactones/pharmacology , Ligands , Narcotic Antagonists/chemistry , Narcotic Antagonists/metabolism , Narcotic Antagonists/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacology , Putamen/drug effects , Putamen/metabolism , Radioligand Assay , Receptors, Opioid, mu/antagonists & inhibitors , Structure-Activity Relationship
17.
J Med Chem ; 44(17): 2687-90, 2001 Aug 16.
Article in English | MEDLINE | ID: mdl-11495579

ABSTRACT

A structurally novel opioid kappa receptor selective ligand has been identified. This compound, (3R)-7-hydroxy-N-((1S)-1-[[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl]-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide (JDTic, 10) demonstrated high affinity for the kappa receptor in the binding assay (kappa K(i) = 0.3 nM) and highly potent and selective kappa antagonism in the [(35)S]GTP-gamma-S assay using cloned opioid receptors (kappa K(i) = 0.006 nM, mu/kappa ratio = 570, delta/kappa ratio > 16600).


Subject(s)
Isoquinolines/chemical synthesis , Narcotic Antagonists/chemical synthesis , Piperidines/chemical synthesis , Receptors, Opioid, kappa/antagonists & inhibitors , Tetrahydroisoquinolines , Animals , Binding, Competitive , Brain/metabolism , Cloning, Molecular , Guinea Pigs , Humans , In Vitro Techniques , Isoquinolines/chemistry , Isoquinolines/metabolism , Isoquinolines/pharmacology , Narcotic Antagonists/chemistry , Narcotic Antagonists/metabolism , Narcotic Antagonists/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacology , Radioligand Assay , Rats , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship
18.
Ann N Y Acad Sci ; 914: 172-86, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11085319

ABSTRACT

Administration of d,l-fenfluramine (FEN), or the more active isomer d-fenfluramine (dFEN), causes long-term depletion of forebrain serotonin (5-HT) in animals. The mechanism underlying FEN-induced 5-HT depletion is not known, but appears to involve 5-HT transporters (SERTs) in the brain. Some investigators have postulated that 5-HT release evoked by FEN is responsible for the deleterious effects of the drug. In the present work, we sought to examine the relationship between drug-induced 5-HT release and long-term 5-HT depletion. The acute 5-HT-releasing effects of dFEN and the non-amphetamine 5-HT agonist 1-(m-chlorophenyl)piperazine (mCPP) were evaluated using in vivo microdialysis in rat nucleus accumbens. The ability of dFEN and mCPP to interact with SERTs was assessed using in vitro assays for [3H]-transmitter uptake and release in rat forebrain synaptosomes. Drugs were subsequently tested for potential long-lasting effects on brain tissue 5-HT after repeated dosing (2.7 or 8.1 mg/kg, ip x 4). dFEN and mCPP were essentially equipotent in their ability to stimulate acute 5-HT release in vivo and in vitro. Both drugs produced very selective effects on 5-HT with minimal effects on dopamine. Interestingly, when dFEN or mCPP was administered repeatedly, only dFEN caused long-term 5-HT depletion in the forebrain at 2 weeks later. These data suggest that acute 5-HT release per se does not mediate the long-term 5-HT depletion associated with dFEN. We hypothesize that dFEN and other amphetamine-type releasers gain entrance into 5-HT neurons via interaction with SERTs. Once internalized in nerve terminals, drugs accumulate to high concentrations, causing damage to cells. The relevance of this hypothesis for explaining clinical side effects of FEN and dFEN, such as cardiac valvulopathy and primary pulmonary hypertension, warrants further study.


Subject(s)
Brain/drug effects , Fenfluramine/administration & dosage , Neurotoxicity Syndromes/metabolism , Selective Serotonin Reuptake Inhibitors/administration & dosage , Serotonin/metabolism , Analysis of Variance , Animals , Brain/anatomy & histology , Brain/metabolism , Brain Chemistry/drug effects , Chromatography, High Pressure Liquid/methods , Disease Models, Animal , Dopamine/metabolism , Dopamine Uptake Inhibitors/pharmacology , Dose-Response Relationship, Drug , Electrochemistry/methods , Male , Microdialysis/methods , Models, Neurological , Piperazines/administration & dosage , Piperazines/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin Receptor Agonists/administration & dosage , Tritium/pharmacokinetics
19.
Ann N Y Acad Sci ; 914: 71-81, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11085310

ABSTRACT

Converging lines of evidence indicate that withdrawal from prolonged exposure to stimulants and alcohol results in synaptic deficits of both dopamine (DA) and serotonin (5-HT). According to the dual deficit model proposed by the authors, DA dysfunction during cocaine or alcohol withdrawal underlies anhedonia and psychomotor retardation, whereas 5-HT dysfunction gives rise to depressed mood, obsessional thoughts, and lack of impulse control. This model predicts that pharmacotherapies which correct only one of the two neurochemical deficits will not be effective. On the other hand, pharmacotherapies which "correct" both of the proposed DA and 5-HT abnormalities should be effective in treating stimulant and alcohol dependence. This paper reviews two approaches, based on the dual deficit model, taken by our laboratory to develop medications to treat stimulant abuse.


Subject(s)
Behavior, Addictive/metabolism , Biogenic Amines/pharmacokinetics , Methamphetamine/toxicity , Animals , Behavior, Addictive/chemically induced , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Interactions , Inhibitory Concentration 50 , Neurotransmitter Uptake Inhibitors/pharmacology , Rats , Synaptosomes/drug effects , Synaptosomes/metabolism , Tritium/pharmacokinetics
20.
Brain Res Bull ; 53(6): 821-6, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11179849

ABSTRACT

Amphetamine-type stimulants are substrates for the proteins that serve as transporters for the biogenic amines dopamine (DA), serotonin (5HT), and norepinephrine (NE) and release these neurotransmitters from neurons located in the peripheral and central nervous system. Using indatraline as a lead compound, we sought to develop a long-acting depot medication that would neutralize the deleterious effects of amphetamine-type stimulants. Our first efforts produced (+/-)-HY038, and its two stereoisomers, which are hydroxy-substituted analog of indatraline. The K(i) values for [(3)H]DA reuptake inhibition by (-)-HY038 and (+)-HY038 were 3.2 +/- 0.1 and 32 +/- 1 nM. Similar results were obtained for [(3)H]5HT reuptake inhibition. (-)-HY038 and (+)-HY038 were slightly less potent at inhibiting [(3)H]NE reuptake (K(i) values of 20 +/- 2 and 159 +/- 12 nM). Low doses of (-)-HY038 blunted the ability of AMPH to release [(3)H]DA by shifting the AMPH dose-response curve to the right in a dose-dependent manner. (-)-HY038 also inhibited the ability of (+)-methamphetamine and (+/-)-3,4-methylenedioxymethamphetamine ((+/-)-MDMA) to release [(3)H]DA. Low doses of (-)-HY038 blunted the ability of these stimulants to release [(3)H]NE and [(3)H]5HT by shifting their dose-response curves to the right in a manner similar to that seen for inhibition of [(3)H]DA release. These data indicate that (-)-HY038 inhibits the ability of AMPH, (+)-methamphetamine and (+/-)-MDMA to release DA, NE, and 5HT and therefore might have the potential to neutralize the neurotoxic and cardiovascular side-effects of substrate-type stimulants.


Subject(s)
Amphetamine-Related Disorders/drug therapy , Amphetamines/agonists , Brain/drug effects , Central Nervous System Stimulants/pharmacology , Indans/agonists , Indans/pharmacology , Methylamines/agonists , Neurotransmitter Uptake Inhibitors/agonists , Amphetamine-Related Disorders/metabolism , Amphetamine-Related Disorders/physiopathology , Animals , Biogenic Monoamines/metabolism , Brain/metabolism , Brain/physiopathology , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Dopamine/pharmacokinetics , Indans/metabolism , Male , Methylamines/metabolism , Neurotransmitter Uptake Inhibitors/metabolism , Radioligand Assay , Rats , Rats, Sprague-Dawley , Synaptosomes/drug effects , Synaptosomes/metabolism , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL