Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Publication year range
1.
Environ Res ; 244: 117992, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38128600

ABSTRACT

Killer whales (Orcinus orca) historically restricted to certain Arctic regions due to extensive sea ice have recently been documented farther north and for longer durations in the Canadian Arctic. These apex predators accumulate high levels of persistent organic pollutants (POPs). The objective of this study was to evaluate the concentrations and profiles of POPs in killer whales of the Canadian Arctic, thus determining potential risks for Inuit communities if consumed. Biopsies were collected from 33 killer whales across areas of the Canadian Arctic between 2009 and 2021. Significant variability in POP concentrations was observed among whales. The cumulative POP concentrations ranged from 12 to >2270 mg/kg lw, representing ∼200-fold increase from the least to the most contaminated individual. The rank order of concentrations of the top five contaminant classes was ∑DDT, ∑PCB, ∑CHL, ∑Toxaphene, and Dieldrin. Several emerging Arctic contaminants were detected, including chlorpyrifos, endosulfan, pentachloroanisole, and polychlorinated naphthalenes, although at relatively lower concentrations than legacy POPs. Considering the elevated blubber POP levels in killer whales, recommended daily consumption thresholds, established based on human tolerable daily intake (TDI) values, were notably restricted for ∑PCB (<0.14 g), ∑DDT (<6.9 g), ∑CHL (<13 g), dieldrin (<8 g) and heptachlor epoxide (<5 g). Killer whales in the Canadian Arctic exhibited higher POP concentrations than other commonly hunted species such as polar bears, ringed seals, and Arctic char. We acknowledge that a more holistic risk assessment of diet is required to assess the cumulative impacts of contaminant mixtures as well as nutritional quality of tissues commonly consumed by northern communities.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Whale, Killer , Animals , Humans , Environmental Monitoring , Persistent Organic Pollutants , Canada , Dieldrin , Arctic Regions , Water Pollutants, Chemical/analysis , Environmental Pollutants/analysis
2.
J Anim Ecol ; 92(10): 1937-1953, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454311

ABSTRACT

Animal habitat selection-central in both theoretical and applied ecology-may depend on behavioural motivations such as foraging, predator avoidance, and thermoregulation. Step-selection functions (SSFs) enable assessment of fine-scale habitat selection as a function of an animal's movement capacities and spatiotemporal variation in extrinsic conditions. If animal location data can be associated with behaviour, SSFs are an intuitive approach to quantify behaviour-specific habitat selection. Fitting SSFs separately for distinct behavioural states helped to uncover state-specific selection patterns. However, while the definition of the availability domain has been highlighted as the most critical aspect of SSFs, the influence of accounting for behaviour in the use-availability design has not been quantified yet. Using a predator-free population of high-arctic muskoxen Ovibos moschatus as a case study, we aimed to evaluate how (1) defining behaviour-specific availability domains, and/or (2) fitting separate behaviour-specific models impacts (a) model structure, (b) estimated selection coefficients and (c) model predictive performance as opposed to behaviour-unspecific approaches. To do so, we first applied hidden Markov models to infer different behavioural modes (resting, foraging, relocating) from hourly GPS positions (19 individuals, 153-1062 observation days/animal). Using SSFs, we then compared behaviour-specific versus behaviour-unspecific habitat selection in relation to terrain features, vegetation and snow conditions. Our results show that incorporating behaviour into the definition of the availability domain primarily impacts model structure (i.e. variable selection), whereas fitting separate behaviour-specific models mainly influences selection strength. Behaviour-specific availability domains improved predictive performance for foraging and relocating models (i.e. behaviours with medium to large spatial displacement), but decreased performance for resting models. Thus, even for a predator-free population subject to only negligible interspecific competition and human disturbance we found that accounting for behaviour in SSFs impacted model structure, selection coefficients and predictive performance. Our results indicate that for robust inference, both a behaviour-specific availability domain and behaviour-specific model fitting should be explored, especially for populations where strong spatiotemporal selection trade-offs are expected. This is particularly critical if wildlife habitat preferences are estimated to inform management and conservation initiatives.

3.
Environ Sci Technol ; 56(1): 271-281, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34914363

ABSTRACT

We assessed long-term changes in the feeding ecology and mercury (Hg) accumulation in Eastern High Arctic-Baffin Bay beluga (Delphinapterus leucas) using total Hg and stable isotope (δ13C, δ15N) assays in teeth samples from historical (1854-1905) and modern (1985-2000) populations. Mean δ13C values in teeth declined significantly over time, from -13.01 ± 0.55‰ historically to -14.41 ± 0.28‰ in 2000, while no consistent pattern was evident for δ15N due to high individual variability within each period. The temporal shift in isotopic niche is consistent with beluga feeding ecology changing in recent decades to a more pelagic and less isotopically diverse diet or an ecosystem wide change in isotope profiles. Mercury concentrations in modern beluga teeth were 3-5 times higher on average than those in historical beluga. These results are similar to the long-term trends of Hg and feeding ecology reported in other beluga populations and in other Arctic marine predators. Similar feeding ecology shifts across regions and species indicate a consistent increased pelagic diet response to climate change as the Arctic Ocean progressively warmed and lost sea ice. Previously, significant temporal Hg increase in beluga and other Arctic animals was attributed solely to direct inputs of anthropogenic Hg from long-range sources. Recent advances in understanding the Arctic marine Hg cycle suggest an additional, complementary possibility─increased inputs of terrestrial Hg of mixed anthropogenic-natural origin, mobilized from permafrost and other Arctic soils by climate warming. At present, it is not possible to assign relative importance to the two processes in explaining the rise of Hg concentrations in modern Arctic marine predators.


Subject(s)
Beluga Whale , Mercury , Water Pollutants, Chemical , Animals , Arctic Regions , Beluga Whale/physiology , Ecosystem , Environmental Monitoring , Mercury/analysis , Water Pollutants, Chemical/analysis
4.
Arch Environ Contam Toxicol ; 83(4): 376-394, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36242644

ABSTRACT

Empirical evidence has shown that historical exposure of polychlorinated biphenyls (PCBs) to Baltic grey seals not only severely affected individual fitness, but also population growth rates and most likely caused the retarded recovery rate of the depleted population for decades. We constructed a new model which we term a toxicokinetic-toxicodynamic (TKTD) population model to quantify these effects. The toxicokinetic sub-model describes in detail the bioaccumulation, elimination and vertical transfer from mother to offspring of PCBs and is linked to a toxicodynamic model for estimation of PCB-related damage, hazard and stress impacts on fertility and survival rates. Both sub-models were linked to a Leslie matrix population model to calculate changes in population growth rate and age structure, given different rates of PCB exposure. Toxicodynamic model parameters related to reproductive organ lesions were calibrated using published historical data on observed pregnancy rates in Baltic grey seal females. Compared to empirical data, the TKTD population model described well the age-specific bioaccumulation pattern of PCBs in Baltic grey seals, and thus, the toxicokinetic parameters, deduced from the literature, are believed to be reliable. The model also captured well the general effects of PCBs on historical population growth rates. The model showed that reduced fertility due to increased PCB exposure causes decreased vertical transfer from mother to offspring and in turn increased biomagnification in non-breeding females. The developed TKTD model can be used to perform population viability analyses of Baltic grey seals with multiple stressors, also including by-catches and different hunting regimes. The model can also be extended to other marine mammals and other contaminants by adjustments of model parameters and thus provides a test bed in silico for new substances.


Subject(s)
Polychlorinated Biphenyls , Seals, Earless , Female , Animals , Polychlorinated Biphenyls/toxicity , Toxicokinetics
5.
Glob Chang Biol ; 27(9): 1755-1771, 2021 05.
Article in English | MEDLINE | ID: mdl-33319455

ABSTRACT

Species conservation in a rapidly changing world requires an improved understanding of how individuals and populations respond to changes in their environment across temporal scales. Increased warming in the Arctic puts this region at particular risk for rapid environmental change, with potentially devastating impacts on resident populations. Here, we make use of a parameterized full life cycle, individual-based energy budget model for wild muskoxen, coupling year-round environmental data with detailed ontogenic metabolic physiology. We show how winter food accessibility, summer food availability, and density dependence drive seasonal dynamics of energy storage and thus life history and population dynamics. Winter forage accessibility defined by snow depth, more than summer forage availability, was the primary determinant of muskox population dynamics through impacts on calf recruitment and longer term carryover effects of maternal investment. Simulations of various seasonal snow depth and plant biomass and quality profiles revealed that timing of and improved/limited winter forage accessibility had marked influence on calf recruitment (±10-80%). Impacts on recruitment were the cumulative result of condition-driven reproductive performance at multiple time points across the reproductive period (ovulation to calf weaning) as a trade-off between survival and reproduction. Seasonal and generational condition effects of snow-rich winters interacted with age structure and density to cause pronounced long-term consequences on population growth and structure, with predicted population recovery times from even moderate disturbances of 10 years or more. Our results show how alteration in winter forage accessibility, mediated by snow depth, impacts the dynamics of northern herbivore populations. Further, we present here a mechanistic and state-based model framework to assess future scenarios of environmental change, such as increased or decreased snowfall or plant biomass and quality to impact winter and summer forage availability across the Arctic.


Subject(s)
Herbivory , Snow , Animals , Arctic Regions , Child , Female , Population Dynamics , Seasons
6.
Environ Sci Technol ; 55(8): 4923-4931, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33760582

ABSTRACT

Interindividual variation in prey specialization is an essential yet overlooked aspect of wildlife feeding ecology, especially as it relates to intrapopulation variation in exposure to toxic contaminants. Here, we assessed blubber concentrations of an extensive suite of persistent organic pollutants in Icelandic killer whales (Orcinus orca). Polychlorinated biphenyl (PCB) concentrations in blubber were >300-fold higher in the most contaminated individual relative to the least contaminated, ranging from 1.3 to 428.6 mg·kg-1 lw. Mean PCB concentrations were 6-to-9-fold greater in individuals with a mixed diet including marine mammals than in fish specialist individuals, whereas males showed PCB concentrations 4-fold higher than females. Given PCBs have been identified as potentially impacting killer whale population growth, and levels in mixed feeders specifically exceeded known thresholds, the ecology of individuals must be recognized to accurately forecast how contaminants may threaten the long-term persistence of the world's ultimate marine predator.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Whale, Killer , Animals , Environmental Monitoring , Female , Iceland , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis
7.
Oecologia ; 195(4): 927-935, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33609167

ABSTRACT

Habitat selection is expected to balance benefits and costs that maximizes fitness. Using a rare data set on collared lemming (Dicrostonyx groenlandicus) winter nest location spanning more than two decades, we show that lemmings actively select for Salix snow beds, likely due to its favorable micro-climate, and that lemming habitat selection was density-dependent. Lemmings nevertheless exhibited some flexibility in their habitat selection, which appeared to be influenced by the year-to-year variation in snow conditions. The likelihood of both lemming breeding and nest predation by stoats (Mustela erminea) was not directly linked to habitat despite a delicate interplay between habitat, nest size, breeding, and predation. Hence, the larger lemming nests were found in Salix snow beds, and these were more often used for breeding, but both larger nests and nests used for breeding were also predated more often than other nests. Our study provides a clear example of how density-dependent habitat selection acts to balance fitness in the various habitats utilized by collared lemmings.


Subject(s)
Plant Breeding , Predatory Behavior , Animals , Arvicolinae , Ecosystem , Seasons
8.
Environ Res ; 183: 109194, 2020 04.
Article in English | MEDLINE | ID: mdl-32036272

ABSTRACT

Mining activities can cause adverse and long-lasting environmental impacts and detailed monitoring is therefore essential to assess the pollution status of mining impacted areas. Here we evaluated the efficacy of two predatory fish species (Gadus ogac i.e. Greenland cod and Myoxocephalus scorpius i.e. shorthorn sculpin) as biomonitors of mining derived metals (Pb, Zn, Cd and Hg) by measuring concentrations in blood, liver, muscle and otoliths along a distance gradient near the former Black Angel Pb-Zn mine (West Greenland). We detected metals in all tissues (except Cd and Hg in otoliths) and sculpin generally displayed higher concentrations than cod. For both species, concentrations were generally highest closest to the dominant pollution source(s) and gradually decreased away from the mine. The clearest gradient was observed for Pb in blood and liver (both species), and for Pb in otoliths (sculpin only). Similar to dissolved concentrations in seawater (but in contrast to bottom sediment), no significant decrease was found for Zn, Cd and Hg in any of the tissues. This demonstrates that by including tissues of blood (representing recent accumulation) and otolith (representing more long-term exposure signals) in the sampling collection, the temporal information on contaminant exposure and accumulation can be extended. We therefore conclude that both fish species are suitable as biomonitors near Arctic mine sites and, moreover, that blood and otoliths can serve as important supplementary monitoring tissues (in addition to liver and muscle traditionally sampled) as they provide extended temporal information on recent to long-term contaminant exposure.


Subject(s)
Fishes , Metals, Heavy , Otolithic Membrane , Water Pollutants , Animals , Arctic Regions , Bioaccumulation , Environmental Monitoring , Greenland , Liver , Metals , Metals, Heavy/pharmacokinetics , Mining , Otolithic Membrane/chemistry , Water Pollutants/pharmacokinetics
9.
Environ Res ; 173: 246-254, 2019 06.
Article in English | MEDLINE | ID: mdl-30928855

ABSTRACT

Persistent organic pollutants (POPs) are found in high concentrations in the Artic. Polar bears (Ursus maritimus) are one of the most exposed mammals in the Arctic and are thereby vulnerable to reproductive disruption. The aim of this study was to investigate male polar bear reproduction based on a detailed evaluation of testis histology and to assess possible effects of environmental chemicals on male polar bear reproduction. Reproductive groups that were identified based on histology were as follows: actively reproductive (REP), non-reproductive either with degenerated testes (DEG), undeveloped seminiferous tubules (UND), or morphology in-transition (INT). Categorization into these groups was supported by significant differences in testis and baculum measurements among REP, DEG, and UND, as well as differences in the area and diameter of seminiferous tubules among REP, DEG, and UND. These results show that it is possible to identify the reproductive stage in polar bears even if capture date and or age is lacking. Based on testis morphology we suggest that adult male polar bears from East Greenland have active spermatogenesis in February to June, and inactive degenerated testes in August to January. January to February was the main period of reproductive transition, characterised by a shift between inactive and active spermatogenesis. Baculum and testis size measurements decreased significantly with increasing concentrations of the chlordane metabolite oxychlordane, suggesting a potential impact on male reproductive success. Half of the investigated polar bears in REP group displayed signs of disorganization of the spermatogenesis which might be a sign of disrupted reproduction. However, no correlations with levels of the investigated POPs were detected. Reproductive organ measurements in polar bears differed significantly between REP and DEG groups, which cannot be explained by age, and therefore should be considered when investigating the effect of POPs on male reproduction.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Testis , Ursidae , Animals , Arctic Regions , Greenland , Male , Seasons
10.
Environ Res ; 175: 376-383, 2019 08.
Article in English | MEDLINE | ID: mdl-31153106

ABSTRACT

The overall aim of the present study was to assess human exposure to environmental contaminants from consumption of harbour seal (Phoca vitulina) meat in the southwestern Baltic Sea. For this purpose, muscle tissue from harbour seals (n = 27) was sampled from Danish locations in the period 2005-2015 and analysed for concentrations of total mercury (Hg), organochlorine contaminants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides as well as perfluoroalkyl substances (PFAS) with particular focus on perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Hg, ∑PCB, PFOS and PFOA concentrations in the muscle tissue ranged between 0.27 and 4.76 µg g-1 wet weight (ww; mean: 1.38 µg g-1 ww, n = 27), 12.2-137 ng g-1 ww (mean: 47.5 ng g-1 ww, n = 10), 6.95-33.6 ng g-1 ww (mean: 15.8 ng g-1 ww, n = 10) and 0.16-0.55 ng g-1 ww (mean: 0.28 ng g-1 ww, n = 10), respectively. We compared the concentrations with literature-derived human tolerable weekly intake (TWI) values for mercury (1.3 µg kg-1 week-1), ∑PCB (2.1 µg kg-1 week-1), PFOS (0.013 µg kg-1 week-1) and PFOA (0.006 µg kg-1 week-1). The comparisons showed that the weekly consumption of harbour seal meat by children (weighing 30 kg), women (weighing 60 kg) and men (weighing 80 kg) should not exceed 28, 57 and 76 g (for Hg), 1.3, 2.7 and 3.5 kg (for ∑PCB), 25, 50 and 67 g (for PFOS) and 640, 1290 and 1720 g (for PFOA). In conclusion, Hg and PFOS are the contaminants of most importance in seal meat from this area with respect to existing tolerable intake rates and risks of adverse human health effects.


Subject(s)
Alkanesulfonic Acids/analysis , Dietary Exposure/analysis , Fluorocarbons/analysis , Meat/analysis , Mercury/analysis , Phoca , Water Pollutants, Chemical/analysis , Animals , Child , Female , Humans , Male
11.
Environ Sci Technol ; 51(19): 11431-11439, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28876915

ABSTRACT

Most controlled toxicity studies use single chemical exposures that do not represent the real world situation of complex mixtures of known and unknown natural and anthropogenic substances. In the present study, complex contaminant cocktails derived from the blubber of polar bears (PB; Ursus maritimus) and killer whales (KW; Orcinus orca) were used for in vitro concentration-response experiments with PB, cetacean and seal spp. immune cells to evaluate the effect of realistic contaminant mixtures on various immune functions. Cytotoxic effects of the PB cocktail occurred at lower concentrations than the KW cocktail (1 vs 16 µg/mL), likely due to differences in contaminant profiles in the mixtures derived from the adipose of each species. Similarly, significant reduction of lymphocyte proliferation occurred at much lower exposures in the PB cocktail (EC50: 0.94 vs 6.06 µg/mL; P < 0.01), whereas the KW cocktail caused a much faster decline in proliferation (slope: 2.9 vs 1.7; P = 0.04). Only the KW cocktail modulated natural killer (NK) cell activity and neutrophil and monocyte phagocytosis in a concentration- and species-dependent manner. No clear sensitivity differences emerged when comparing cetaceans, seals and PB. Our results showing lower effect levels for complex mixtures relative to single compounds suggest that previous risk assessments underestimate the effects of real world contaminant exposure on immunity. Our results using blubber-derived contaminant cocktails add realism to in vitro exposure experiments and confirm the immunotoxic risk marine mammals face from exposure to complex mixtures of environmental contaminants.


Subject(s)
Adipose Tissue/chemistry , Caniformia/immunology , Environmental Pollutants , Ursidae/immunology , Whale, Killer/immunology , Animals , Seals, Earless
13.
Arch Environ Contam Toxicol ; 73(2): 270-284, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28528419

ABSTRACT

Sediments have long been used to help describe pollution sources, contaminated sites, trends over time, and habitat quality for marine life. We collected surficial sediments from 12 sites at an average seawater depth of 25 m in three near-urban areas of the Salish Sea (British Columbia, Canada) to investigate habitat quality for marine life, including heavily contaminated killer whales. Samples were analyzed using high-resolution instrumentation for a wide variety of congeners of polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs), hexabromocyclododecane (HBCDD), polybrominated biphenyls, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans, organochlorine pesticides, and polychlorinated naphthalenes (PCNs). The top six contaminant classes detected in sediments were ∑PCB > ∑PBDE > ∑PCDD/F > DDT > ∑HBCDD > ∑PCN. Near-urban harbor sediments had up to three orders of magnitude higher concentrations of contaminants than more remote sites. With limited tools available to characterize biological risks associated with complex mixtures in the real world, we applied several available approaches to prioritize the pollutant found in our study: (1) sediment quality guidelines from the Canadian Council of Ministers of the Environment where available; (2) US NOAA effects range low and other international guidelines; (3) total TEQ for dioxin-like PCBs for the protection of mammals; and (4) the calculation of risk quotients. Our findings provide an indication of the state of contamination of coastal environments in British Columbia and guidance for chemical regulations and priority setting, as well as management actions including best-practices, dredging, disposal at sea, and source control. In this regard, the legacy PCB and the emergent PBDEs should command continued priority monitoring.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/analysis , Benzofurans/analysis , British Columbia , Geologic Sediments/chemistry , Pesticides/analysis , Polybrominated Biphenyls/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , Risk Assessment , Seawater
14.
Environ Res ; 151: 244-250, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27504872

ABSTRACT

To better elucidate the potential immune-related health effects of exposure to environmentally persistent organic pollutants (POP), such as polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), in ringed seals (Pusa hispida), a sentinel Arctic species, we assessed 1) associations between mitogen-induced lymphocyte proliferation and in vivo tissue contaminant burdens, and 2) the concentration-response effects of in vitro exposure to PFASs and PCB congeners on mitogen-induced lymphocyte proliferation. Upon in vitro contaminant exposure, the non-coplanar PCB congeners CB 138, 153, and 180, but not the coplanar CB 169, significantly reduced lymphocyte proliferation between 10 and 20µgg-1 ww. The respective in vitro EC50 values for these congeners were 13.3, 20.7, 20.8, and 54.6µgg-1 ww. No modulation of lymphocyte proliferation was observed upon in vitro exposure to two individual PFASs, perfluorooctane sulphonic acid (PFOS) and perfluorooctanoic acid (PFOA), at concentrations up to 1000ngg-1. In addition, no significant correlations were found between lymphocyte proliferation and any blood or blubber contaminant measured. Taken together, these data suggest this population of ringed seals is not currently at high risk of altered lymphocyte proliferation from exposure to the POPs or PFASs in this study.


Subject(s)
Alkanesulfonic Acids/toxicity , Caprylates/toxicity , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Polychlorinated Biphenyls/toxicity , Seals, Earless/immunology , Alkanesulfonic Acids/immunology , Animals , Caprylates/immunology , Environmental Pollutants/immunology , Female , Fluorocarbons/immunology , Lymphocytes/drug effects , Male , Polychlorinated Biphenyls/immunology
15.
Arch Environ Contam Toxicol ; 70(1): 143-54, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26289812

ABSTRACT

Polychlorinated biphenyls (PCBs) can cause endocrine disruption, cancer, immunosuppression, or reproductive failure in animals. We used an individual-based model to explore whether and how PCB-associated reproductive failure could affect the dynamics of a hypothetical polar bear (Ursus maritimus) population exposed to PCBs to the same degree as the East Greenland subpopulation. Dose-response data from experimental studies on a surrogate species, the mink (Mustela vision), were used in the absence of similar data for polar bears. Two alternative types of reproductive failure in relation to maternal sum-PCB concentrations were considered: increased abortion rate and increased cub mortality. We found that the quantitative impact of PCB-induced reproductive failure on population growth rate depended largely on the actual type of reproductive failure involved. Critical potencies of the dose-response relationship for decreasing the population growth rate were established for both modeled types of reproductive failure. Comparing the model predictions of the age-dependent trend of sum-PCBs concentrations in females with actual field measurements from East Greenland indicated that it was unlikely that PCB exposure caused a high incidence of abortions in the subpopulation. However, on the basis of this analysis, it could not be excluded that PCB exposure contributes to higher cub mortality. Our results highlight the necessity for further research on the possible influence of PCBs on polar bear reproduction regarding their physiological pathway. This includes determining the exact cause of reproductive failure, i.e., in utero exposure versus lactational exposure of offspring; the timing of offspring death; and establishing the most relevant reference metrics for the dose-response relationship.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollution/statistics & numerical data , Models, Theoretical , Animals , Environmental Pollutants/analysis , Greenland , Polychlorinated Biphenyls/analysis , Population Density , Reproduction , Ursidae
16.
Environ Res ; 140: 45-55, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25825130

ABSTRACT

Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ∑PCBs (1797-10,537 ng/g lw), sum methylsulphone-PCB ∑MeSO2-PCBs (110-672 ng/g lw), sum chlordanes ∑CHLs (765-3477 ng/g lw), α-hexachlorocyclohexane α-HCH (8.5-91.3 ng/g lw), ß-hexachlorocyclohexane ß-HCH (65.5-542 ng/g lw), sum chlorbenzenes ∑ClBzs (145-304 ng/g lw), dichlorodiphenyltrichloroethane ∑DDTs (31.5-206 ng/g lw), dieldrin (69-249 ng/g lw), polybrominated diphenyl ethers ∑PBDEs (4.6-78.4 ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792 ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ∑MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17

Subject(s)
Carcinogens/pharmacokinetics , Carcinogens/toxicity , Environmental Exposure , Immune System/drug effects , Reproduction/drug effects , Animals , Arctic Regions , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/toxicity , Female , Male , Toxicokinetics , Ursidae
17.
Arch Environ Contam Toxicol ; 69(3): 320-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26066061

ABSTRACT

Microplastics are increasingly recognized as being widespread in the world's oceans, but relatively little is known about ingestion by marine biota. In light of the potential for microplastic fibers and fragments to be taken up by small marine organisms, we examined plastic ingestion by two foundation species near the base of North Pacific marine food webs, the calanoid copepod Neocalanus cristatus and the euphausiid Euphausia pacifia. We developed an acid digestion method to assess plastic ingestion by individual zooplankton and detected microplastics in both species. Encounter rates resulting from ingestion were 1 particle/every 34 copepods and 1/every 17 euphausiids (euphausiids > copepods; p = 0.01). Consistent with differences in the size selection of food between these two zooplankton species, the ingested particle size was greater in euphausiids (816 ± 108 µm) than in copepods (556 ± 149 µm) (p = 0.014). The contribution of ingested microplastic fibres to total plastic decreased with distance from shore in euphausiids (r (2) = 70, p = 0.003), corresponding to patterns in our previous observations of microplastics in seawater samples from the same locations. This first evidence of microplastic ingestion by marine zooplankton indicate that species at lower trophic levels of the marine food web are mistaking plastic for food, which raises fundamental questions about potential risks to higher trophic level species. One concern is risk to salmon: We estimate that consumption of microplastic-containing zooplankton will lead to the ingestion of 2-7 microplastic particles/day by individual juvenile salmon in coastal British Columbia, and ≤91 microplastic particles/day in returning adults.


Subject(s)
Environmental Monitoring , Food Chain , Plastics/analysis , Water Pollutants, Chemical/analysis , Zooplankton , Animals , Aquatic Organisms , Biota , British Columbia , Copepoda , Pacific Ocean , Seawater/chemistry
18.
Environ Sci Technol ; 48(12): 6981-8, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24846277

ABSTRACT

Polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) concentrations and profiles in paired sediment-plankton samples were determined along a 500 km transect in coastal British Columbia, Canada. PCB and PBDE levels in sediment were both greater in the industrialized Strait of Georgia than in remote northern sites and exhibited parallel spatial trends. In plankton, recent-use PBDE levels were higher near-source, while levels of legacy PCBs were uniform across sites. Principal component analysis of 95 PCB congeners illustrated the influence of proximity to source (i.e., latitude) on congener patterns for both matrices (sediment, r(2) = 0.52, p = 0.012; plankton, r(2) = 0.59, p = 0.016). The PCB pattern in plankton grew lighter with latitude, but the opposite pattern in sediments suggested that temperature-related fractionation, sediment processes, and basin-wide oceanography had divergent effects on each matrix. Biota-sediment accumulation factors (BSAFs) were greater for PBDEs than PCBs, but spatial profiles were similar; PCBs and PBDEs were near equilibrium in remote atmospherically driven sites (BSAF = 1.7 and 1.3) but accumulated preferentially in sediments at source-driven sites (BSAF = 0.2 and 0.4). The influences of particle-binding and hydrophobicity on the aquatic fate of PCBs and PBDEs was evident by the strong influence of log KOW on congener-specific BSAFs (PCBs, r(2) = 0.18 p < 0.001; PBDEs, r(2) = 0.61 p < 0.001). While biotic uptake of PCBs has become spatially uniform in coastal BC because of dilution over time, biomagnification of PBDEs remains higher in industrialized waters.


Subject(s)
Geologic Sediments/chemistry , Halogenated Diphenyl Ethers/metabolism , Plankton/metabolism , Polychlorinated Biphenyls/metabolism , Seawater/chemistry , Water Pollutants, Chemical/metabolism , Biota , British Columbia , Geography , Principal Component Analysis
19.
Environ Sci Technol ; 48(6): 3162-8, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24524759

ABSTRACT

Dissolved organic carbon (DOC) is known to affect the Hg cycle in aquatic environments due to its overriding influence on complexation, photochemical, and microbial processes, but its role as a mediating factor in the bioaccumulation of Hg in aquatic biota has remained enigmatic. Here, we examined 26 tundra lakes in Canada's western Arctic that span a large gradient of DOC concentrations to show that total Hg (HgT) and methyl mercury (MeHg) accumulation by aquatic invertebrates is defined by a threshold response to Hg-DOC binding. Our results showed that DOC promotes HgT and MeHg bioaccumulation in tundra lakes having low DOC (<8.6 - 8.8 mg C L(-1); DOC threshold concentration, TC) whereas DOC inhibits HgT and MeHg bioaccumulation in lakes having high DOC (>DOC TC), consistent with bioaccumulation results in a companion paper (this issue) using a microbial bioreporter. Chemical equilibrium modeling showed that Hg bioaccumulation factors were elevated when Hg was associated mainly to fulvic acids, but became dramatically reduced when DOC was >8.5 mg C L(-1), at which point Hg was associated primarily with strong binding sites on larger, less bioaccessible humic acids. This study demonstrates that the biological uptake of Hg in lakes is determined by binding thresholds on DOC, a water quality variable predicted to change markedly with future environmental change.


Subject(s)
Carbon/chemistry , Mercury/chemistry , Methylmercury Compounds/chemistry , Water Pollutants, Chemical/chemistry , Animals , Canada , Carbon/analysis , Humic Substances , Invertebrates/chemistry , Invertebrates/metabolism , Lakes/chemistry , Mercury/analysis , Mercury/metabolism , Methylmercury Compounds/analysis , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
20.
Lancet Planet Health ; 7(7): e570-e579, 2023 07.
Article in English | MEDLINE | ID: mdl-37437998

ABSTRACT

BACKGROUND: Perfluoroalkyl substances (PFASs) are ubiquitous global contaminants that do not readily biodegrade and are therefore routinely found worldwide in wildlife, humans, and the environment. There is a paucity of global assessments to understand regional and continental differences in exposure to PFASs and the associated health risks, including those for Indigenous Arctic communities who consume high trophic marine diets. We aimed to estimate the long-term exposure of dietary PFASs from consumption of polar bear and ringed seal meat and establish its association with blood serum concentrations of PFASs in Inuit in Ittoqoortoormiit (Scoresby Sound), East Greenland. We also aimed to assess the risk of immune suppression on the basis of European Food Safety Authority (EFSA) thresholds for weekly intake and blood serum concentrations of PFASs. Last, we conducted a worldwide risk assessment based on blood concentrations of PFASs emphasising Arctic exposure in a global context. METHODS: In this mixed-methods study, we conducted interviews to compare dietary exposure of PFASs in anonymous, non-pregnant, Inuit adults (aged ≥18 years) from full-time or part-time hunter families in Ittoqoortoormiit, East Greenland with ESFA toxic threshold values for tolerable weekly intake of the four most immunotoxic PFASs (∑4PFAS; perfluorooctanoic acid, perfluorononanoic acid, perfluorohexanesulfonic acid, and perfluorooctane sulfonate). Independent hospital staff from the local hospital randomly selected participants using simple randomisation using a telephone directory. Blood serum concentrations were then compared with EFSA risk categories: low (0·7-9·5 ng/mL), moderate (>9·5-17·5 ng/mL), high (>17·5-31·9 ng/mL), and severe (>31·9 ng/mL). We also reviewed the available scientific literature of ∑4PFAS concentrations in human blood to place the Inuit dataset in a broader global context. FINDINGS: Between Sept 21, and Oct 2, 2015, 22 participants were enrolled in the study, of which 12 were male and ten were female. Sex data were obtained from personal social security numbers and options were male or female. As a result of a subsistence diet high in marine mammal muscle, 322 (92%) of 350 people in the Ittoqoortoormiit cohort exceeded the established immunotoxic thresholds of ∑4PFASs set by EFSA's tolerable weekly intake of 4·4 ng/kg, and 301 (86%) were in the most severe risk category (>31·9 ng/mL) based on blood serum concentrations. This Inuit cohort had the highest non-occupational long-term exposure to PFASs worldwide despite their remote location relative to industrial sources. Using country-wide average values across global studies, we found that blood serum concentrations of PFASs in populations from European countries, North America, the Arctic, and Australia were generally higher than those in South America, Africa, and mainland Asia, with the highest concentrations found in people from USA, Canada, Greenland, Faroe Islands, Denmark, Iceland, Norway, Sweden, the UK, Spain, Poland, and Australia. These high exposure countries all fall within the EFSA moderate-risk and high-risk categories. INTERPRETATION: PFAS contamination of the environment and human populations occurs worldwide. This pollution not only poses substantial risks for immune system adverse events but also cardiovascular, cancerous, and reproductive endpoints. Data on such PFAS exposure is scarce in numerous countries. Therefore, it is important to also map out the exposure in these countries to enable a thorough global assessment of exposure and risks. FUNDING: Danish Cooperation for Environment in the Arctic.


Subject(s)
Industry , Mammals , Adult , Animals , Humans , Female , Male , Adolescent , Greenland , North America , Denmark , Africa
SELECTION OF CITATIONS
SEARCH DETAIL