Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biol Phys ; 47(3): 237-251, 2021 09.
Article in English | MEDLINE | ID: mdl-34495477

ABSTRACT

We propose an experiment to demonstrate spontaneous ordering and symmetry breaking of kinesin-driven microtubules confined to an optical trap. Calculations involving the feasibility of such an experiment are first performed which analyze the power needed to confine microtubules and address heating concerns. We then present the results of first-principles simulations of active microtubules confined in such a trap and analyze the types of motion observed by the microtubules as well as the velocity of the surrounding fluid, both near the trap and in the far-field. We find three distinct phases characterized by breaking of distinct symmetries and also analyze the power spectrum of the angular momenta of polymers to further quantify the differences between these phases. Under the correct conditions, microtubules were found to spontaneously align with one another and circle the trap in one direction.


Subject(s)
Microtubules , Optical Tweezers , Kinesins , Motion
2.
Rep Prog Phys ; 81(8): 082001, 2018 08.
Article in English | MEDLINE | ID: mdl-29862983

ABSTRACT

The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states.

3.
Biophys J ; 110(9): 2053-65, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27166813

ABSTRACT

The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions for fast plus-end directed fluid flows that facilitate mixing in a low Reynolds number regime.


Subject(s)
Cytoplasmic Streaming , Hydrodynamics , Kinesins/metabolism , Mechanical Phenomena , Microtubules/metabolism , Models, Biological , Biomechanical Phenomena , Movement , Oocytes/cytology
4.
Phys Rev E ; 101(3-1): 032112, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289895

ABSTRACT

We ask to what extent an isolated quantum system can eventually "contract" to be contained within a given Hilbert subspace. We do this by starting with an initial random state, considering the probability that all the particles will be measured in a fixed subspace, and maximizing this probability over all time. This is relevant, for example, in a cosmological context, which may have access to indefinite timescales. We find that when the subspace is much smaller than the entire space, this maximal probability goes to 1/2 for real initial wave functions, and to π^{2}/16 when the initial wave function has been drawn from a complex ensemble. For example, when starting in a real generic state, the chances of collapsing all particles into a small box will be less than but come arbitrarily close to 50%. This contraction corresponds to an entropy reduction by a factor of approximately 2, thus bounding large downward fluctuations in entropy from generic initial states.

SELECTION OF CITATIONS
SEARCH DETAIL