Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Appl Opt ; 57(22): E218-E223, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30117905

ABSTRACT

In this paper, we show the experimental results of a thermally stable Si3N4 external cavity (SiN EC) laser with high power output and the lowest SiN EC laser threshold to our knowledge. The device consists of a 250 µm sized reflective semiconductor optical amplifier butt-coupled to a passive chip based on a series of Si3N4 Bragg gratings acting as narrow reflectors. A threshold of 12 mA has been achieved, with a typical side-mode suppression ratio of 45 dB and measured power output higher than 3 mW. Furthermore, we achieved a mode-hop free-lasing regime in the range of 15-62 mA and wavelength thermal stability up to 80°C. This solves the challenges related to cavity resonances' thermal shift and shows the possibility for this device to be integrated in dense wavelength-division multiplexing (WDM) and heat-intensive optical interconnects technologies.

2.
Opt Express ; 20(12): 13040-54, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714331

ABSTRACT

We theoretically investigate mid-IR absorption enhancement with a SiC one-dimensional photonic crystal (PC) microstructure at the frequency regime of the phonon-polariton band gap, where efficient absorption is unattainable in the bulk material. Our study reveals an intricate relationship between absorption efficiency and the energy velocity of light propagation, that is far more complex than hitherto believed. In particular, our findings suggest that absorption peaks away from the photonic-crystal band edge where energy velocity is minimum. While efficient absorption is still associated with a slow-light mode, the latter is faster by at least an order of magnitude in comparison to the bulk material. Moreover, our calculations suggest that absorption becomes optimal when light gradually slow downs as it enters the PC. Relying on this insight, we achieved near-perfect absorption around the phonon-polariton mid-gap frequency with a PC with a suitably terminated end face. We further demonstrate that the near-perfect absorptive property can be tuned with the incident light angle, to be polarization insensitive or polarization selective. We believe our proposed non-metallic paradigm opens up a new route for harnessing infrared absorption with semiconductor and ionic-crystal materials.

3.
Sci Rep ; 12(1): 17097, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224273

ABSTRACT

In this work, we present an on-chip 2D and 3D photonics integration solution compatible with Front End of Line integration (FEOL) using deposited polycrystalline silicon (poly:Si) for optical interconnects applications. Deposited silicon integration on a bulk silicon wafer is here discussed in all its processing steps and configurations. Moreover, results of deposited silicon high-Q Photonic Crystal (PhC) resonators are shown, demonstrating the possibility to employ optical resonators patterned on this material in the next generation of 2D and 3D integrated optical interconnects.

SELECTION OF CITATIONS
SEARCH DETAIL