Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Lung Cancer ; 153: 90-98, 2021 03.
Article in English | MEDLINE | ID: mdl-33465699

ABSTRACT

OBJECTIVES: Despite disparities in lung cancer incidence and mortality, the molecular landscape of lung cancer in patients of African ancestry remains underexplored, and race-related differences in RNA splicing remain unexplored. MATERIALS AND METHODS: We identified differentially spliced genes (DSGs) and differentially expressed genes (DEGs) in biobanked lung squamous cell carcinoma (LUSC) between patients of West African and European ancestry, using ancestral genotyping and Affymetrix Clariom D array. DSGs and DEGs were validated independently using the National Cancer Institute Genomic Data Commons. Associated biological processes, overlapping canonical pathways, enriched gene sets, and cancer relevance were identified using Gene Ontology Consortium, Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, and CancerMine, respectively. Association with LUSC survival was conducted using The Cancer Genome Atlas. RESULTS: 4,829 DSGs and 267 DEGs were identified, including novel targets in NSCLC as well as genes identified previously to have relevance to NSCLC. RNA splicing events within 3 DSGs as well as 1 DEG were validated in the independent cohort. 853 DSGs and 29 DEGs have been implicated as potential drivers, oncogenes and/or tumor suppressor genes. Biological processes enriched among DSGs and DEGs included metabolic process, biological regulation, and multicellular organismal process and, among DSGs, ion transport. Overlapping canonical pathways among DSGs included neuronal signaling pathways and, among DEGs, cell metabolism involving biosynthesis. Gene sets enriched among DSGs included KRAS Signaling, UV Response, E2 F Targets, Glycolysis, and Coagulation. 355 RNA splicing events within DSGs and 18 DEGs show potential association with LUSC patient survival. CONCLUSION: These DSGs and DEGs, which show potential biological and clinical relevance, could have the ability to drive novel biomarker and therapeutic development to mitigate LUSC disparities.


Subject(s)
Carcinoma, Squamous Cell , Lung Neoplasms , Carcinoma, Squamous Cell/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Lung , Lung Neoplasms/genetics , RNA Splicing/genetics
2.
Clin Cancer Res ; 25(10): 2963-2968, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30755441

ABSTRACT

Studies of alternative RNA splicing (ARS) have the potential to provide an abundance of novel targets for development of new biomarkers and therapeutics in oncology, which will be necessary to improve outcomes for patients with cancer and mitigate cancer disparities. ARS, a key step in gene expression enabling individual genes to encode multiple proteins, is emerging as a major driver of abnormal phenotypic heterogeneity. Recent studies have begun to identify RNA splicing-related genetic and genomic variation in tumors, oncogenes dysregulated by ARS, RNA splice variants driving race-related cancer aggressiveness and drug response, spliceosome-dependent transformation, and RNA splicing-related immunogenic epitopes in cancer. In addition, recent studies have begun to identify and test, preclinically and clinically, approaches to modulate and exploit ARS for therapeutic application, including splice-switching oligonucleotides, small molecules targeting RNA splicing or RNA splice variants, and combination regimens with immunotherapies. Although ARS data hold such promise for precision oncology, inclusion of studies of ARS in translational and clinical cancer research remains limited. Technologic developments in sequencing and bioinformatics are being routinely incorporated into clinical oncology that permit investigation of clinically relevant ARS events, yet ARS remains largely overlooked either because of a lack of awareness within the clinical oncology community or perceived barriers to the technical complexity of analyzing ARS. This perspective aims to increase such awareness, propose immediate opportunities to improve identification and analysis of ARS, and call for bioinformaticians and cancer researchers to work together to address the urgent need to incorporate ARS into cancer biology and precision oncology.


Subject(s)
Neoplasms/genetics , Neoplasms/therapy , Precision Medicine/methods , RNA Splicing , Alternative Splicing , Biomarkers, Tumor/genetics , Health Status Disparities , Humans , Molecular Targeted Therapy , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL