Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Blood Adv ; 6(6): 1671-1683, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35073571

ABSTRACT

Chronic lymphocytic leukemia (CLL), the most common leukemia worldwide, is associated with increased COVID-19 mortality. Previous studies suggest only a portion of vaccinated CLL patients develop severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antibodies. Whether the elicited antibodies are functional and/or accompanied by functional T-cell responses is unknown. This prospective cohort study included patients with CLL who received SARS-CoV-2 and PCV13 vaccines (not concurrently). The primary cohort included adults with CLL off therapy. Coprimary outcomes were serologic response to SARS-CoV-2 (receptor binding domain [RBD] immunoassay) and PCV13 vaccines (23-serotype IgG assay). Characterization of SARS-CoV-2 antibodies and their functional activity and assessment of functional T-cell responses was performed. Sixty percent (18/30) of patients demonstrated serologic responses to SARS-CoV-2 vaccination, appearing more frequent among treatment-naïve patients (72%). Among treatment-naïve patients, an absolute lymphocyte count ≤24 000/µL was associated with serologic response (94% vs 14%; P < .001). On interferon-γ release assays, 80% (16/20) of patients had functional spike-specific T-cell responses, including 78% (7/9) with a negative RBD immunoassay, a group enriched for prior B-cell-depleting therapies. A bead-based multiplex immunoassay identified antibodies against wild-type and variant SARS-CoV-2 (α, ß, γ, and δ) in all tested patients and confirmed Fc-receptor binding and effector functions of these antibodies. Of 11 patients with negative RBD immunoassay after vaccination, 6 (55%) responded to an additional mRNA-based vaccine dose. The PCV13 serologic response rate was 29% (8/28). Our data demonstrate that SARS-CoV-2 vaccination induces functional T-cell and antibody responses in patients with CLL and provides the framework for investigating the molecular mechanisms and clinical benefit of these responses. This trial was registered at www.clinicaltrials.gov as #NCT05007860.


Subject(s)
COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Adult , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunogenicity, Vaccine , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Prospective Studies , SARS-CoV-2
2.
Nat Biotechnol ; 23(3): 344-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15723048

ABSTRACT

Combinatorial libraries of rearranged hypervariable V(H) and V(L) sequences from nonimmunized human donors contain antigen specificities, including anti-self reactivities, created by random pairing of V(H)s and V(L)s. Somatic hypermutation of immunoglobulin genes, however, is critical in the generation of high-affinity antibodies in vivo and occurs only after immunization. Thus, in combinatorial phage display libraries from nonimmunized donors, high-affinity antibodies are rarely found. Lengthy in vitro affinity maturation is often needed to improve antibodies from such libraries. We report the construction of human Fab libraries having a unique combination of immunoglobulin sequences captured from human donors and synthetic diversity in key antigen contact sites in heavy-chain complementarity-determining regions 1 and 2. The success of this strategy is demonstrated by identifying many monovalent Fabs against multiple therapeutic targets that show higher affinities than approved therapeutic antibodies. This very often circumvents the need for affinity maturation, accelerating discovery of antibody drug candidates.


Subject(s)
Antibody Affinity , Antibody Formation , Complementarity Determining Regions/genetics , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/immunology , Peptide Library , Protein Engineering/methods , Genetic Variation/genetics , Humans , Immunoglobulin Fab Fragments/genetics , Protein Binding , Recombination, Genetic/genetics , Tissue Donors
3.
J Immunol Methods ; 289(1-2): 65-80, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15251413

ABSTRACT

We introduce a procedure for the rapid generation of fully human antibodies derived from "Fab-on-phage" display libraries. The technology is based on the compatibility of display vectors and IgG expression constructs, and allows reformatting of individual Fab clones to IgG, as well as reformatting of antibody repertoires. Examples of batch reformatting of an uncharacterized Fab repertoire and of a pool of Fabs, previously analyzed at the phage level, are presented. The average transient expression levels of the IgG constructs in HEK293T cells are above 10 microg/ml, allowing the use of conditioned media in functional assays without antibody purification. Furthermore, we describe a high-throughput purification method yielding IgG amounts sufficient for initial antibody characterization. Our technology allows the generation and production of antigen-specific complete human antibodies as fast or even faster than raising monoclonal antibodies by conventional hybridoma techniques.


Subject(s)
Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin G/biosynthesis , Peptide Library , Antibodies/genetics , Cells, Cultured , Genetic Vectors/genetics , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin G/genetics , Receptor, TIE-1/immunology
4.
Biotechnol Prog ; 18(2): 182-92, 2002.
Article in English | MEDLINE | ID: mdl-11934284

ABSTRACT

Several phage isolates that bind specifically to human serum albumin (HSA) were isolated from disulfide-constrained cyclic peptide phage-display libraries. The majority of corresponding synthetic peptides bind with micromolar affinity to HSA in low salt at pH 6.2, as determined by fluorescence anisotropy. One of the highest affinity peptides, DX-236, also bound well to several mammalian serum albumins (SA). Immobilized DX-236 quantitatively captures HSA from human serum; mild conditions (100 mM Tris, pH 9.1) allow release of HSA. The DX-236 affinity column bound HSA from human serum with a greater specificity than does Cibacron Blue agarose beads. In addition to its likely utility in HSA and other mammalian SA purifications, this peptide media may be useful in the proteomics and medical research markets for selective removal of mammalian albumin from serum prior to mass spectrometric and other analyses.


Subject(s)
Bacteriophage M13/metabolism , Chromatography, Affinity/methods , Peptides/metabolism , Serum Albumin/isolation & purification , Serum Albumin/metabolism , Amino Acid Sequence , Bacteriophage M13/genetics , Enzyme-Linked Immunosorbent Assay , Fluorescence Polarization/methods , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Library , Peptides/genetics , Protein Binding , Sensitivity and Specificity , Serum Albumin/genetics , Species Specificity
5.
J Mol Recognit ; 18(1): 94-102, 2005.
Article in English | MEDLINE | ID: mdl-15382264

ABSTRACT

B lymphocyte stimulator (BLyS) is a tumor necrosis factor (TNF) family member and a key regulator of B cell responses. We employed a phage display-based approach to identify peptides that bind BLyS with high selectivity and affinity. Sequence analysis of first-generation BLyS-binding peptides revealed two dominant peptide motifs, including one containing a conserved DxLT sequence. Selected linear peptides with this motif were found to bind BLyS with K(D) values of 1-3 microM. In order to improve the binding affinity for BLyS, consensus residues flanking the DxLT sequence were seeded into a second-generation, BLyS affinity maturation library (BAML). BAML phage were subjected to stringent binding competition conditions to select for isolates expressing high-affinity peptide ligands for BLyS. Post-selection analysis of BAML peptide sequences resulted in the identification of a core decapeptide motif (WYDPLTKLWL). Peptides containing this core motif exhibited K(D) values as low as 26 nM, approximately 100-fold lower than that of first-generation peptides. A fluorescence anisotropy assay was developed to monitor the protein-protein interaction between BLyS labeled with a ruthenium chelate, and TACI-Fc, a soluble form of a BLyS receptor. Using this assay it was found that a BAML peptide disrupts this high-affinity protein-protein interaction. This demonstrates the potential of short peptides for disruption of high affinity cytokine-receptor interactions.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Peptide Library , Peptides/chemistry , Peptides/isolation & purification , Receptors, Tumor Necrosis Factor/chemistry , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/chemistry , Amino Acid Motifs , B-Cell Activating Factor , Biological Assay , Conserved Sequence , Disulfides/chemistry , Fluorescence Polarization , Humans , Membrane Proteins/metabolism , Membrane Proteins/physiology , Peptides/metabolism , Protein Interaction Mapping/methods , Receptors, Tumor Necrosis Factor/physiology , Ruthenium/chemistry , Transmembrane Activator and CAML Interactor Protein , Tumor Necrosis Factor-alpha/metabolism
6.
JAMA ; 248(17): 2180, 1982 Nov 05.
Article in English | MEDLINE | ID: mdl-11643797

ABSTRACT

KIE: A research assistant in the Office of the General Counsel of the American Medical Association responds to a question which suggests that physicians are ethically and legally required to use only ordinary, but not extraordinary, means to prolong life. She responds in the negative, explaining briefly the varying connotations which "extraordinary" treatment has in ethics, medicine, and law.^ieng


Subject(s)
Jurisprudence , Life Support Care , Moral Obligations , Physicians , Social Responsibility , Euthanasia, Passive , Humans
7.
JAMA ; 249(6): 815, 1983 Feb 11.
Article in English | MEDLINE | ID: mdl-11643951

ABSTRACT

KIE: Devlin, a research assistant in the Office of the General Counsel of the American Medical Association, responds to a physician's question about the validity of the consumer advocacy interpretation of informed consent as requiring that the physician not seek to influence the patient's decision. She responds that the physician is obligated to make recommendations in accordance with good medical practice.^ieng


Subject(s)
Informed Consent , Decision Making , Disclosure , Humans , Jurisprudence , Moral Obligations , Patient Participation , Physician-Patient Relations , Risk , Risk Assessment , Social Responsibility
8.
J Biol Chem ; 278(18): 15532-40, 2003 May 02.
Article in English | MEDLINE | ID: mdl-12606557

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), a recently identified human homolog of ACE, is a novel metallocarboxypeptidase with specificity, tissue distribution, and function distinct from those of ACE. ACE2 may play a unique role in the renin-angiotensin system and mediate cardiovascular and renal function. Here we report the discovery of ACE2 peptide inhibitors through selection of constrained peptide libraries displayed on phage. Six constrained peptide libraries were constructed and selected against FLAG-tagged ACE2 target. ACE2 peptide binders were identified and classified into five groups, based on their effects on ACE2 activity. Peptides from the first three classes exhibited none, weak, or moderate inhibition on ACE2. Peptides from the fourth class exhibited strong inhibition, with equilibrium inhibition constants (K(i) values) from 0.38 to 1.7 microm. Peptides from the fifth class exhibited very strong inhibition, with K(i) values < 0.14 microm. The most potent inhibitor, DX600, had a K(i) of 2.8 nm. Steady-state enzyme kinetic analysis showed that these potent ACE2 inhibitors exhibited a mixed competitive and non-competitive type of inhibition. They were not hydrolyzed by ACE2. Furthermore, they did not inhibit ACE activity, and thus were specific to ACE2. Finally, they also inhibited ACE2 activity toward its natural substrate angiotensin I, suggesting that they would be functional in vivo. As novel ACE2-specific peptide inhibitors, they should be useful in elucidation of ACE2 in vivo function, thus contributing to our better understanding of the biology of cardiovascular regulation. Our results also demonstrate that library selection by phage display technology can be a rapid and efficient way to discover potent and specific protease inhibitors.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Carboxypeptidases/antagonists & inhibitors , Peptides/pharmacology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Molecular Sequence Data , Peptide Library , Peptidyl-Dipeptidase A
SELECTION OF CITATIONS
SEARCH DETAIL