Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Virol ; 89(3): 1781-93, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25410871

ABSTRACT

UNLABELLED: Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. IMPORTANCE: Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV.


Subject(s)
Chickenpox/veterinary , Cross Protection , Herpesvirus 3, Human/immunology , Primate Diseases/prevention & control , Animals , Antibodies, Viral/blood , Chickenpox/immunology , Chickenpox/pathology , Chickenpox/prevention & control , DNA, Viral/genetics , DNA, Viral/isolation & purification , Ganglia/virology , Macaca mulatta , Male , Primate Diseases/immunology , T-Lymphocytes/immunology
2.
J Virol ; 87(4): 2151-63, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23221560

ABSTRACT

Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus that causes chickenpox during primary infection and establishes latency in sensory ganglia. Infection of rhesus macaques (RM) with the homologous simian varicella virus (SVV) recapitulates hallmarks of VZV infection. We have shown that an antisense transcript of SVV open reading frame 61 (ORF61), a viral transactivator, was detected most frequently in latently infected RM sensory ganglia. In this study, we compared disease progression, viral replication, immune response, and the establishment of latency following intrabronchial infection with a recombinant SVV lacking ORF61 (SVVΔORF61) to those following infection with wild-type (WT) SVV. Varicella severity and viral latency within sensory ganglia were comparable in RMs infected with SVVΔORF61 and WT SVV. In contrast, viral loads, B and T cell responses, and plasma inflammatory cytokine levels were decreased in RMs infected with SVVΔORF61. To investigate the mechanisms underlying the reduced adaptive immune response, we compared acute SVV gene expression, frequency and proliferation of dendritic cell (DC) subsets, and the expression of innate antiviral genes in bronchoalveolar lavage (BAL) samples. The abundance of SVV transcripts in all kinetic classes was significantly decreased in RMs infected with SVVΔORF61. In addition, we detected a higher frequency and proliferation of plasmacytoid dendritic cells in BAL fluid at 3 days postinfection in RMs infected with SVVΔORF61, which was accompanied by a slight increase in type I interferon gene expression. Taken together, our data suggest that ORF61 plays an important role in orchestrating viral gene expression in vivo and interferes with the host antiviral interferon response.


Subject(s)
Adaptive Immunity , Gene Deletion , Herpesvirus 3, Human/immunology , Herpesvirus 3, Human/pathogenicity , Viral Proteins/genetics , Viral Proteins/immunology , Animals , B-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , Chickenpox/immunology , Chickenpox/pathology , Chickenpox/virology , Cytokines/blood , Ganglia, Sensory/virology , Herpesvirus 3, Human/genetics , Macaca mulatta , Primate Diseases/immunology , Primate Diseases/pathology , Primate Diseases/virology , T-Lymphocytes/immunology , Viral Load , Virulence Factors/genetics , Virulence Factors/immunology , Virus Latency
3.
J Virol ; 87(15): 8294-306, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23698305

ABSTRACT

Simian varicella virus (SVV) infection of rhesus macaques (RMs) recapitulates the hallmarks of varicella-zoster virus (VZV) infection of humans, including the establishment of latency within the sensory ganglia. Various factors, including age and immune fitness, influence the outcome of primary VZV infection, as well as reactivation resulting in herpes zoster (HZ). To increase our understanding of the role of lymphocyte subsets in the establishment of viral latency, we analyzed the latent SVV transcriptome in juvenile RMs depleted of CD4 T, CD8 T, or CD20 B lymphocytes during acute infection. We have previously shown that SVV latency in sensory ganglia of nondepleted juvenile RMs is associated with a limited transcriptional profile. In contrast, CD4 depletion during primary infection resulted in the failure to establish a characteristic latent viral transcription profile in sensory ganglia, where we detected 68 out of 69 SVV-encoded open reading frames (ORFs). CD-depleted RMs displayed a latent transcriptional profile that included additional viral transcripts within the core region of the genome not detected in control RMs. The latent transcriptome of CD20-depleted RMs was comparable to the latent transcription in the sensory ganglia of control RMs. Lastly, we investigated the impact of age on the establishment of SVV latency. SVV gene expression was more active in ganglia from two aged RMs than in ganglia from juvenile RMs, with 25 of 69 SVV transcripts detected. Therefore, immune fitness at the time of infection modulates the establishment and/or maintenance of SVV latency.


Subject(s)
Ganglia, Sensory/virology , Gene Expression Regulation, Viral , Herpesvirus 3, Human/immunology , Herpesvirus 3, Human/physiology , Virus Latency , Age Factors , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Herpesvirus 3, Human/genetics , Lymphocyte Depletion , Macaca mulatta , Transcriptome
4.
J Virol ; 87(21): 11751-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23986583

ABSTRACT

Varicella zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (HZ [shingles]). Clinical observations suggest that VZV-specific T cell immunity plays a more critical role than humoral immunity in the prevention of VZV reactivation and development of herpes zoster. Although numerous studies have characterized T cell responses directed against select VZV open reading frames (ORFs), a comprehensive analysis of the T cell response to the entire VZV genome has not yet been conducted. We have recently shown that intrabronchial inoculation of young rhesus macaques with simian varicella virus (SVV), a homolog of VZV, recapitulates the hallmarks of acute and latent VZV infection in humans. In this study, we characterized the specificity of T cell responses during acute and latent SVV infection. Animals generated a robust and broad T cell response directed against both structural and nonstructural viral proteins during acute infection in bronchoalveolar lavage (BAL) fluid and peripheral blood. During latency, T cell responses were detected only in the BAL fluid and were lower and more restricted than those observed during acute infection. Interestingly, we identified a small set of ORFs that were immunogenic during both acute and latent infection in the BAL fluid. Given the close genome relatedness of SVV and VZV, our studies highlight immunogenic ORFs that may be further investigated as potential components of novel VZV vaccines that specifically boost T cell immunity.


Subject(s)
Gene Expression Profiling , Herpesviridae Infections/immunology , Primate Diseases/immunology , T-Lymphocytes/immunology , Varicellovirus/immunology , Viral Proteins/immunology , Virus Latency/immunology , Animals , Blood/immunology , Bronchoalveolar Lavage Fluid/immunology , Genome-Wide Association Study , Macaca mulatta
5.
PLoS Pathog ; 7(11): e1002367, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22102814

ABSTRACT

Primary infection with varicella zoster virus (VZV) results in varicella (more commonly known as chickenpox) after which VZV establishes latency in sensory ganglia. VZV can reactivate to cause herpes zoster (shingles), a debilitating disease that affects one million individuals in the US alone annually. Current vaccines against varicella (Varivax) and herpes zoster (Zostavax) are not 100% efficacious. Specifically, studies have shown that 1 dose of varivax can lead to breakthrough varicella, albeit rarely, in children and a 2-dose regimen is now recommended. Similarly, although Zostavax results in a 50% reduction in HZ cases, a significant number of recipients remain at risk. To design more efficacious vaccines, we need a better understanding of the immune response to VZV. Clinical observations suggest that T cell immunity plays a more critical role in the protection against VZV primary infection and reactivation. However, no studies to date have directly tested this hypothesis due to the scarcity of animal models that recapitulate the immune response to VZV. We have recently shown that SVV infection of rhesus macaques models the hallmarks of primary VZV infection in children. In this study, we used this model to experimentally determine the role of CD4, CD8 and B cell responses in the resolution of primary SVV infection in unvaccinated animals. Data presented in this manuscript show that while CD20 depletion leads to a significant delay and decrease in the antibody response to SVV, loss of B cells does not alter the severity of varicella or the kinetics/magnitude of the T cell response. Loss of CD8 T cells resulted in slightly higher viral loads and prolonged viremia. In contrast, CD4 depletion led to higher viral loads, prolonged viremia and disseminated varicella. CD4 depleted animals also had delayed and reduced antibody and CD8 T cell responses. These results are similar to clinical observations that children with agammaglobulinemia have uncomplicated varicella whereas children with T cell deficiencies are at increased risk of progressive varicella with significant complications. Moreover, our studies indicate that CD4 T cell responses to SVV play a more critical role than antibody or CD8 T cell responses in the control of primary SVV infection and suggest that one potential mechanism for enhancing the efficacy of VZV vaccines is by eliciting robust CD4 T cell responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chickenpox/immunology , Disease Models, Animal , Herpesviridae Infections/immunology , Herpesvirus 3, Human/immunology , Macaca mulatta , Varicellovirus/immunology , Animals , Antigens, CD20/immunology , B-Lymphocytes/immunology , CD4 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Chickenpox/prevention & control , Chickenpox/virology , Chickenpox Vaccine/immunology , Herpesviridae Infections/virology , Varicellovirus/physiology , Viral Load , Virus Replication
6.
Virol J ; 10: 278, 2013 Sep 08.
Article in English | MEDLINE | ID: mdl-24010815

ABSTRACT

BACKGROUND: Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus that infects humans and results in chickenpox and herpes zoster. A number of VZV genes remain functionally uncharacterized and since VZV is an obligate human pathogen, rigorous evaluation of VZV mutants in vivo remains challenging. Simian varicella virus (SVV) is homologous to VZV and SVV infection of rhesus macaques (RM) closely mimics VZV infection of humans. Recently the SVV genome was cloned as a bacterial artificial chromosome (BAC) and BAC-derived SVV displayed similar replication kinetics as wild-type (WT) SVV in vitro. METHODS: RMs were infected with BAC-derived SVV or WT SVV at 4x10(5) PFU intrabronchially (N=8, 4 per group, sex and age matched). We collected whole blood (PBMC) and bronchoalveolar lavage (BAL) at various days post-infection (dpi) and sensory ganglia during latent infection (>84 dpi) at necropsy and compared disease progression, viral replication, immune response and the establishment of latency. RESULTS: Viral replication kinetics and magnitude in bronchoalveolar lavage cells and whole blood as well as rash severity and duration were similar in RMs infected with SVV BAC or WT SVV. Moreover, SVV-specific B and T cell responses were comparable between BAC and WT-infected animals. Lastly, we measured viral DNA in sensory ganglia from both cohorts of infected RMs during latent infection. CONCLUSIONS: SVV BAC is as pathogenic and immunogenic as WT SVV in vivo. Thus, the SVV BAC genetic system combined with the rhesus macaque animal model can further our understanding of viral ORFs important for VZV pathogenesis and the development of second-generation vaccines.


Subject(s)
Chickenpox/pathology , Chickenpox/virology , Chromosomes, Artificial, Bacterial , Varicellovirus/genetics , Varicellovirus/pathogenicity , Animals , Blood/virology , Bronchoalveolar Lavage Fluid/virology , Disease Models, Animal , Ganglia, Sensory/virology , Macaca mulatta , Virus Latency
7.
PLoS Negl Trop Dis ; 8(11): e3295, 2014.
Article in English | MEDLINE | ID: mdl-25412185

ABSTRACT

Infection with yellow fever virus (YFV), an explosively replicating flavivirus, results in viral hemorrhagic disease characterized by cardiovascular shock and multi-organ failure. Unvaccinated populations experience 20 to 50% fatality. Few studies have examined the pathophysiological changes that occur in humans during YFV infection due to the sporadic nature and remote locations of outbreaks. Rhesus macaques are highly susceptible to YFV infection, providing a robust animal model to investigate host-pathogen interactions. In this study, we characterized disease progression as well as alterations in immune system homeostasis, cytokine production and gene expression in rhesus macaques infected with the virulent YFV strain DakH1279 (YFV-DakH1279). Following infection, YFV-DakH1279 replicated to high titers resulting in viscerotropic disease with ∼72% mortality. Data presented in this manuscript demonstrate for the first time that lethal YFV infection results in profound lymphopenia that precedes the hallmark changes in liver enzymes and that although tissue damage was noted in liver, kidneys, and lymphoid tissues, viral antigen was only detected in the liver. These observations suggest that additional tissue damage could be due to indirect effects of viral replication. Indeed, circulating levels of several cytokines peaked shortly before euthanasia. Our study also includes the first description of YFV-DakH1279-induced changes in gene expression within peripheral blood mononuclear cells 3 days post-infection prior to any clinical signs. These data show that infection with wild type YFV-DakH1279 or live-attenuated vaccine strain YFV-17D, resulted in 765 and 46 differentially expressed genes (DEGs), respectively. DEGs detected after YFV-17D infection were mostly associated with innate immunity, whereas YFV-DakH1279 infection resulted in dysregulation of genes associated with the development of immune response, ion metabolism, and apoptosis. Therefore, WT-YFV infection is associated with significant changes in gene expression that are detectable before the onset of clinical symptoms and may influence disease progression and outcome of infection.


Subject(s)
Host-Pathogen Interactions , Transcriptome/physiology , Yellow Fever/physiopathology , Yellow fever virus/physiology , Animals , Antigens, Viral/immunology , Disease Models, Animal , Disease Progression , Female , Gene Expression Regulation, Viral , Humans , Kidney/pathology , Leukocytes, Mononuclear/immunology , Liver/immunology , Liver/pathology , Lymphopenia/virology , Macaca mulatta , Multiple Organ Failure/virology , Necrosis , Spleen/pathology , Vaccines, Attenuated/immunology , Yellow Fever/immunology , Yellow Fever/virology , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL