Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cancers (Basel) ; 15(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37444395

ABSTRACT

VIP (vasoactive intestinal peptide) is a 28-amino acid peptide hormone expressed by cancer and the healthy nervous system, digestive tract, cardiovascular, and immune cell tissues. Many cancers express VIP and its surface receptors VPAC1 and VPAC2, but the role of autocrine VIP signaling in cancer as a targetable prognostic and predictive biomarker remains poorly understood. Therefore, we conducted an in silico gene expression analysis to study the mechanisms of autocrine VIP signaling in cancer. VIP expression from TCGA PANCAN tissue samples was analyzed against the expression levels of 760 cancer-associated genes. Of the 760 genes, 10 (MAPK3, ZEB1, TEK, NOS2, PTCH1 EIF4G1, GMPS, CDK2, RUVBL1, and TIMELESS) showed statistically meaningful associations with the VIP (Pearson's R-coefficient > |0.3|; p < 0.05) across all cancer histologies. The strongest association with the VIP was for the epithelial-mesenchymal transition regulator ZEB1 in gastrointestinal malignancies. Similar positive correlations between the VIP and ZEB1 expression were also observed in healthy gastrointestinal tissues. Gene set analysis indicates the VIP is involved in the EMT and cell cycle pathways, and a high VIP and ZEB1 expression is associated with higher median estimate and stromal scores These findings uncover novel mechanisms for VIP- signaling in cancer and specifically suggest a role for VIP as a biomarker of ZEB1-mediated EMT. Further studies are warranted to characterize the specific mechanism of this interaction.

2.
Am J Crit Care ; 32(1): 9-20, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36065019

ABSTRACT

BACKGROUND: Health care professionals (HCPs) performing tracheostomies in patients with COVID-19 may be at increased risk of infection. OBJECTIVE: To evaluate factors underlying HCPs' COVID-19 infection and determine whether tracheostomy providers report increased rates of infection. METHODS: An anonymous international survey examining factors associated with COVID-19 infection was made available November 2020 through July 2021 to HCPs at a convenience sample of hospitals, universities, and professional organizations. Infections reported were compared between HCPs involved in tracheostomy on patients with COVID-19 and HCPs who were not involved. RESULTS: Of the 361 respondents (from 33 countries), 50% (n = 179) had performed tracheostomies on patients with COVID-19. Performing tracheostomies on patients with COVID-19 was not associated with increased infection in either univariable (P = .06) or multivariable analysis (odds ratio, 1.48; 95% CI, 0.90-2.46; P = .13). Working in a low- or middle-income country (LMIC) was associated with increased infection in both univariable (P < .001) and multivariable analysis (odds ratio, 2.88; CI, 1.50-5.53; P = .001). CONCLUSIONS: Performing tracheostomy was not associated with COVID-19 infection, suggesting that tracheostomies can be safely performed in infected patients with appropriate precautions. However, HCPs in LMICs may face increased infection risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Tracheostomy , Health Personnel , Surveys and Questionnaires
3.
PNAS Nexus ; 2(4): pgad085, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37113978

ABSTRACT

Neurodevelopmental disorders (NDDs) are a widespread and growing public health challenge, affecting as many as 17% of children in the United States. Recent epidemiological studies have implicated ambient exposure to pyrethroid pesticides during pregnancy in the risk for NDDs in the unborn child. Using a litter-based, independent discovery-replication cohort design, we exposed mouse dams orally during pregnancy and lactation to the Environmental Protection Agency's reference pyrethroid, deltamethrin, at 3 mg/kg, a concentration well below the benchmark dose used for regulatory guidance. The resulting offspring were tested using behavioral and molecular methods targeting behavioral phenotypes relevant to autism and NDD, as well as changes to the striatal dopamine system. Low-dose developmental exposure to the pyrethroid deltamethrin (DPE) decreased pup vocalizations, increased repetitive behaviors, and impaired both fear conditioning and operant conditioning. Compared with control mice, DPE mice had greater total striatal dopamine, dopamine metabolites, and stimulated dopamine release, but no difference in vesicular dopamine capacity or protein markers of dopamine vesicles. Dopamine transporter protein levels were increased in DPE mice, but not temporal dopamine reuptake. Striatal medium spiny neurons showed changes in electrophysiological properties consistent with a compensatory decrease in neuronal excitability. Combined with previous findings, these results implicate DPE as a direct cause of an NDD-relevant behavioral phenotype and striatal dopamine dysfunction in mice and implicate the cytosolic compartment as the location of excess striatal dopamine.

4.
Nat Commun ; 13(1): 6418, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302761

ABSTRACT

A paucity of effector T cells within tumors renders pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint therapies. While several under-development approaches target immune-suppressive cells in the tumor microenvironment, there is less focus on improving T cell function. Here we show that inhibiting vasoactive intestinal peptide receptor (VIP-R) signaling enhances anti-tumor immunity in murine PDAC models. In silico data mining and immunohistochemistry analysis of primary tumors indicate overexpression of the neuropeptide vasoactive intestinal peptide (VIP) in human PDAC tumors. Elevated VIP levels are also present in PDAC patient plasma and supernatants of cultured PDAC cells. Furthermore, T cells up-regulate VIP receptors after activation, identifying the VIP signaling pathway as a potential target to enhance T cell function. In mouse PDAC models, VIP-R antagonist peptides synergize with anti-PD-1 antibody treatment in improving T cell recruitment into the tumors, activation of tumor-antigen-specific T cells, and inhibition of T cell exhaustion. In contrast to the limited single-agent activity of anti-PD1 antibodies or VIP-R antagonist peptides, combining both therapies eliminate tumors in up to 40% of animals. Furthermore, tumor-free mice resist tumor re-challenge, indicating anti-cancer immunological memory generation. VIP-R signaling thus represents a tumor-protective immune-modulatory pathway that is targetable in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Vasoactive Intestinal Peptide/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Receptors, Vasoactive Intestinal Peptide , Signal Transduction , Tumor Microenvironment , Pancreatic Neoplasms
5.
Crit Care Explor ; 4(11): e0796, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36440062

ABSTRACT

Timing of tracheostomy in patients with COVID-19 has attracted substantial attention. Initial guidelines recommended delaying or avoiding tracheostomy due to the potential for particle aerosolization and theoretical risk to providers. However, early tracheostomy could improve patient outcomes and alleviate resource shortages. This study compares outcomes in a diverse population of hospitalized COVID-19 patients who underwent tracheostomy either "early" (within 14 d of intubation) or "late" (more than 14 d after intubation). DESIGN: International multi-institute retrospective cohort study. SETTING: Thirteen hospitals in Bolivia, Brazil, Spain, and the United States. PATIENTS: Hospitalized patients with COVID-19 undergoing early or late tracheostomy between March 1, 2020, and March 31, 2021. INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: A total of 549 patients from 13 hospitals in four countries were included in the final analysis. Multivariable regression analysis showed that early tracheostomy was associated with a 12-day decrease in time on mechanical ventilation (95% CI, -16 to -8; p < 0.001). Further, ICU and hospital lengths of stay in patients undergoing early tracheostomy were 15 days (95% CI, -23 to -9 d; p < 0.001) and 22 days (95% CI, -31 to -12 d) shorter, respectively. In contrast, early tracheostomy patients experienced lower risk-adjusted survival at 30-day post-admission (hazard ratio, 3.0; 95% CI, 1.8-5.2). Differences in 90-day post-admission survival were not identified. CONCLUSIONS: COVID-19 patients undergoing tracheostomy within 14 days of intubation have reduced ventilator dependence as well as reduced lengths of stay. However, early tracheostomy patients experienced lower 30-day survival. Future efforts should identify patients most likely to benefit from early tracheostomy while accounting for location-specific capacity.

6.
Genes Brain Behav ; 19(5): e12634, 2020 06.
Article in English | MEDLINE | ID: mdl-31898856

ABSTRACT

A subset of people exposed to a traumatic event develops post-traumatic stress disorder (PTSD), which is associated with dysregulated fear behavior. Genetic variation in SLC18A2, the gene that encodes vesicular monoamine transporter 2 (VMAT2), has been reported to affect risk for the development of PTSD in humans. Here, we use transgenic mice that express either 5% (VMAT2-LO mice) or 200% (VMAT2-HI mice) of wild-type levels of VMAT2 protein. We report that VMAT2-LO mice have reduced VMAT2 protein in the hippocampus and amygdala, impaired monoaminergic vesicular storage capacity in both the striatum and frontal cortex, decreased monoamine metabolite abundance and a greatly reduced capacity to release dopamine upon stimulation. Furthermore, VMAT2-LO mice showed exaggerated cued and contextual fear expression, altered fear habituation, inability to discriminate threat from safety cues, altered startle response compared with wild-type mice and an anxiogenic-like phenotype, but displayed no deficits in social function. By contrast, VMAT2-HI mice exhibited increased VMAT2 protein throughout the brain, higher vesicular storage capacity and greater dopamine release upon stimulation compared with wild-type controls. Behaviorally, VMAT2-HI mice were similar to wild-type mice in most assays, with some evidence of a reduced anxiety-like responses. Together, these data show that presynaptic monoamine function mediates PTSD-like outcomes in our mouse model, and suggest a causal link between reduced VMAT2 expression and fear behavior, consistent with the correlational relationship between VMAT2 genotype and PTSD risk in humans. Targeting this system is a potential strategy for the development of pharmacotherapies for disorders like PTSD.


Subject(s)
Fear , Stress Disorders, Post-Traumatic/genetics , Vesicular Monoamine Transport Proteins/genetics , Amygdala/metabolism , Amygdala/physiology , Animals , Cues , Dopamine/metabolism , Female , Habituation, Psychophysiologic , Hippocampus/metabolism , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Social Behavior , Vesicular Monoamine Transport Proteins/metabolism
7.
Brain Res ; 1702: 85-95, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29274878

ABSTRACT

The synaptic vesicle glycoprotein 2C (SV2C) is an undercharacterized protein with enriched expression in phylogenetically old brain regions. Its precise role within the brain is unclear, though various lines of evidence suggest that SV2C is involved in the function of synaptic vesicles through the regulation of vesicular trafficking, calcium-induced exocytosis, or synaptotagmin function. SV2C has been linked to multiple neurological disorders, including Parkinson's disease and psychiatric conditions. SV2C is expressed in various cell types-primarily dopaminergic, GABAergic, and cholinergic cells. In mice, it is most highly expressed in nuclei within the basal ganglia, though it is unknown if this pattern of expression is consistent across species. Here, we use a custom SV2C-specific antiserum to describe localization within the brain of mouse, nonhuman primate, and human, including cell-type localization. We found that the immunoreactivity with this antiserum is consistent with previously-published antibodies, and confirmed localization of SV2C in the basal ganglia of rodent, rhesus macaque, and human. We observed strongest expression of SV2C in the substantia nigra, ventral tegmental area, dorsal striatum, pallidum, and nucleus accumbens of each species. Further, we demonstrate colocalization between SV2C and markers of dopaminergic, GABAergic, and cholinergic neurons within these brain regions. SV2C has been increasingly linked to dopamine and basal ganglia function. These antisera will be an important resource moving forward in our understanding of the role of SV2C in vesicle dynamics and neurological disease.


Subject(s)
Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/metabolism , Animals , Basal Ganglia/metabolism , Brain/metabolism , Cholinergic Neurons/metabolism , Dopaminergic Neurons/metabolism , GABAergic Neurons/metabolism , Gene Expression Profiling/methods , HEK293 Cells , Humans , Immune Sera/immunology , Immunohistochemistry/methods , Macaca , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Parkinson Disease/metabolism , Synaptic Vesicles/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL