Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Br J Cancer ; 130(6): 1046-1058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278978

ABSTRACT

BACKGROUND: The repurposing of FDA-approved drugs for anti-cancer therapies is appealing due to their established safety profiles and pharmacokinetic properties and can be quickly moved into clinical trials. Cancer progression and resistance to conventional chemotherapy remain the key hurdles in improving the clinical management of colon cancer patients and associated mortality. METHODS: High-throughput screening (HTS) was performed using an annotated library of 1,600 FDA-approved drugs to identify drugs with strong anti-CRC properties. The candidate drug exhibiting most promising inhibitory effects in in-vitro studies was tested for its efficacy using in-vivo models of CRC progression and chemoresistance and patient derived organoids (PTDOs). RESULTS: Albendazole, an anti-helminth drug, demonstrated the strongest inhibitory effects on the tumorigenic potentials of CRC cells, xenograft tumor growth and organoids from mice. Also, albendazole sensitized the chemoresistant CRC cells to 5-fluorouracil (5-FU) and oxaliplatin suggesting potential to treat chemoresistant CRC. Mechanistically, Albendazole treatment modulated the expression of RNF20, to promote apoptosis in CRC cells by delaying the G2/M phase and suppressing anti-apoptotic-Bcl2 family transcription. CONCLUSIONS: Albendazole, an FDA approved drug, carries strong therapeutic potential to treat colon cancers which are aggressive and potentially resistant to conventional chemotherapeutic agents. Our findings also lay the groundwork for further clinical testing.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Animals , Mice , Albendazole/pharmacology , Albendazole/therapeutic use , Colorectal Neoplasms/pathology , Ubiquitin/pharmacology , Ubiquitin/therapeutic use , Drug Resistance, Neoplasm , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Fluorouracil/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Ubiquitin-Protein Ligases
2.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G123-G139, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38771154

ABSTRACT

Microtubule-associated serine-threonine kinase-like (MASTL) has recently been identified as an oncogenic kinase given its overexpression in numerous cancers. Our group has shown that MASTL expression is upregulated in mouse models of sporadic colorectal cancer and colitis-associated cancer (CAC). CAC is one of the most severe complications of chronic inflammatory bowel disease (IBD), but a limited understanding of the mechanisms governing the switch from normal healing to neoplasia in IBD underscores the need for increased research in this area. However, MASTL levels in patients with IBD and its molecular regulation in IBD and CAC have not been studied. This study reveals that MASTL is upregulated by the cytokine interleukin (IL)-22, which promotes proliferation and has important functions in colitis recovery; however, IL-22 can also promote tumorigenesis when chronically elevated. Upon reviewing the publicly available data, we found significantly elevated MASTL and IL-22 levels in the biopsies from patients with late-stage ulcerative colitis compared with controls, and that MASTL upregulation was associated with high IL-22 expression. Our subsequent in vitro studies found that IL-22 increases MASTL expression in intestinal epithelial cell lines, which facilitates IL-22-mediated cell proliferation and downstream survival signaling. Inhibition of AKT activation abrogated IL-22-induced MASTL upregulation. We further found an increased association of carbonic anhydrase IX (CAIX) with MASTL in IL-22-treated cells, which stabilized MASTL expression. Inhibition of CAIX prevented IL-22-induced MASTL expression and cell survival. Overall, we show that IL-22/AKT signaling increases MASTL expression to promote cell survival and proliferation. Furthermore, CAIX associates with and stabilizes MASTL in response to IL-22 stimulation.NEW & NOTEWORTHY MASTL is upregulated in colorectal cancer; however, its role in colitis and colitis-associated cancer is poorly understood. This study is the first to draw a link between MASTL and IL-22, a proinflammatory/intestinal epithelial recovery-promoting cytokine that is also implicated in colon tumorigenesis. We propose that IL-22 increases MASTL protein stability by promoting its association with CAIX potentially via AKT signaling to promote cell survival and proliferation.


Subject(s)
Interleukin-22 , Interleukins , Intestinal Mucosa , Interleukins/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Animals , Cell Proliferation , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Mice , Up-Regulation , Proto-Oncogene Proteins c-akt/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/genetics , Antigens, Neoplasm
3.
Bioorg Med Chem ; 92: 117416, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37541070

ABSTRACT

Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, despite advancements in diagnosis. The main reason for this is that many newly diagnosed CRC patients will suffer from metastasis to other organs. Thus, the development of new therapies is of critical importance. Claudin-1 protein is a component of tight junctions in epithelial cells, including those found in the lining of the colon. It plays a critical role in the formation and maintenance of tight junctions, which are essential for regulating the passage of molecules between cells. In CRC, claudin-1 is often overexpressed, leading to an increase in cell adhesion, which can contribute to the development and progression of the disease. Studies show that high levels of claudin-1 are associated with poor prognosis in CRC patients and targeting claudin-1 may have therapeutic potential for the treatment of CRC. Previously, we have identified a small molecule that inhibits claudin-1 dependent CRC progression. Reported herein are our lead optimization efforts around this scaffold to identify the key SAR components and the discovery of a key new compound that exhibits enhanced potency in SW620 cells.


Subject(s)
Colorectal Neoplasms , Humans , Claudin-1 , Colorectal Neoplasms/pathology , Epithelial Cells/metabolism
4.
J Transl Med ; 20(1): 534, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36401282

ABSTRACT

Gene editing has great potential in treating diseases caused by well-characterized molecular alterations. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based gene-editing tools has substantially improved the precision and efficiency of gene editing. The CRISPR/Cas9 system offers several advantages over the existing gene-editing approaches, such as its ability to target practically any genomic sequence, enabling the rapid development and deployment of novel CRISPR-mediated knock-out/knock-in methods. CRISPR/Cas9 has been widely used to develop cancer models, validate essential genes as druggable targets, study drug-resistance mechanisms, explore gene non-coding areas, and develop biomarkers. CRISPR gene editing can create more-effective chimeric antigen receptor (CAR)-T cells that are durable, cost-effective, and more readily available. However, further research is needed to define the CRISPR/Cas9 system's pros and cons, establish best practices, and determine social and ethical implications. This review summarizes recent CRISPR/Cas9 developments, particularly in cancer research and immunotherapy, and the potential of CRISPR/Cas9-based screening in developing cancer precision medicine and engineering models for targeted cancer therapy, highlighting the existing challenges and future directions. Lastly, we highlight the role of artificial intelligence in refining the CRISPR system's on-target and off-target effects, a critical factor for the broader application in cancer therapeutics.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , CRISPR-Cas Systems/genetics , Artificial Intelligence , Gene Editing/methods , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy
5.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946266

ABSTRACT

Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-ß, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/drug therapy , Signal Transduction/drug effects , Animals , Antineoplastic Agents/therapeutic use , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Drug Discovery , Drug Resistance, Neoplasm/drug effects , Hedgehog Proteins/metabolism , Humans , Molecular Targeted Therapy , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, Notch/metabolism , Wnt Signaling Pathway/drug effects
6.
Int J Mol Sci ; 21(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952355

ABSTRACT

Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.


Subject(s)
Carcinogenesis/genetics , Claudin-1/genetics , Epithelial Cells/metabolism , Neoplasms/genetics , Tight Junctions/genetics , Tumor Suppressor Proteins/genetics , Cell Proliferation/genetics , Claudin-1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/metabolism , Survival Analysis , Tight Junctions/metabolism , Tumor Suppressor Proteins/metabolism
7.
Gut ; 68(3): 547-561, 2019 03.
Article in English | MEDLINE | ID: mdl-30297438

ABSTRACT

Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.


Subject(s)
Gastrointestinal Diseases/metabolism , Liver Diseases/metabolism , Tight Junction Proteins/physiology , Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic/metabolism , Claudins/metabolism , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Tract/physiology , Hepatitis C/drug therapy , Hepatitis C/metabolism , Humans , Liver/metabolism , Liver Neoplasms/metabolism , Molecular Targeted Therapy/methods , Tight Junctions/physiology
8.
J Surg Res ; 242: 145-150, 2019 10.
Article in English | MEDLINE | ID: mdl-31077946

ABSTRACT

INTRODUCTION: Claudins are tight-junction proteins, which maintain an epithelial barrier in normal colon cells. Overexpression of Claudin-1 has been implicated for development of colon cancer. We postulated that Claudin-1 may be a useful target in near-infrared imaging and fluorescence-guided surgery. METHODS: We conjugated Claudin-1 antibody to LI-COR IR800DyeCW (Claudin-1-IRDye800CW). Western blotting of 9 human colon cancer cell lysates was performed. Animal imaging was performed with the LI-COR Pearl Trilogy Fluorescence Imaging System. A dose-response study was carried out with subcutaneous LS174T colon cancer cell line models. Increasing doses of Claudin-1-IRDye800CW via tail vein injection were administered to three groups of mice. Two groups of mice were used as controls (antibody alone, and dye alone). In vivo imaging was performed at 24, 48, and 72 h after administration of the conjugated dye. Orthotopic implantation of patient-derived tumors and cell lines was performed and peritoneal carcinomatosis models were created. After tumor growth, mice were administered Claudin-1-IRDye800CW and imaged in vivo 48 h later. The mice were euthanized and laparotomy was performed to assess internal organs and toxicity. RESULTS: Western blotting revealed that all colon cancer cell lysates expressed varying amounts of Claudin-1. All tumors demonstrated strong and specific fluorescence labeling at 800 nm, even with the lowest dose of 12.5 µg of Claudin-1-IRDye800CW. CONCLUSIONS: Claudin-1 is a useful target for near-infrared antibody-based imaging for visualization of colorectal tumors for future use in fluorescence-guided surgery.


Subject(s)
Claudin-1/immunology , Colonic Neoplasms/diagnostic imaging , Fluorescent Dyes/administration & dosage , Immunoconjugates/administration & dosage , Peritoneal Neoplasms/diagnostic imaging , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Benzenesulfonates/administration & dosage , Cell Line, Tumor , Colon/diagnostic imaging , Colon/pathology , Colonic Neoplasms/pathology , Colonic Neoplasms/surgery , Dose-Response Relationship, Drug , Humans , Immunoconjugates/immunology , Indoles/administration & dosage , Injections, Intravenous , Male , Mice , Mice, Nude , Peritoneal Neoplasms/surgery , Spectroscopy, Near-Infrared/methods , Surgery, Computer-Assisted/methods , Xenograft Model Antitumor Assays
9.
Int J Mol Sci ; 21(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861759

ABSTRACT

Claudins are cell-cell adhesion proteins, which are expressed in tight junctions (TJs), the most common apical cell-cell adhesion. Claudin proteins help to regulate defense and barrier functions, as well as differentiation and polarity in epithelial and endothelial cells. A series of studies have now reported dysregulation of claudin proteins in cancers. However, the precise mechanisms are still not well understood. Nonetheless, studies have clearly demonstrated a causal role of multiple claudins in the regulation of epithelial to mesenchymal transition (EMT), a key feature in the acquisition of a cancer stem cell phenotype in cancer cells. In addition, claudin proteins are known to modulate therapy resistance in cancer cells, a feature associated with cancer stem cells. In this review, we have focused primarily on highlighting the causal link between claudins, cancer stem cells, and therapy resistance. We have also contemplated the significance of claudins as novel targets in improving the efficacy of cancer therapy. Overall, this review provides a much-needed understanding of the emerging role of claudin proteins in cancer malignancy and therapeutic management.


Subject(s)
Claudins/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Claudins/analysis , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Prognosis
10.
Mol Cancer ; 17(1): 111, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30068336

ABSTRACT

BACKGROUND: Chemotherapeutic agents that modulate cell cycle checkpoints and/or tumor-specific pathways have shown immense promise in preclinical and clinical studies aimed at anti-cancer therapy. MASTL (Greatwall in Xenopus and Drosophila), a serine/threonine kinase controls the final G2/M checkpoint and prevents premature entry of cells into mitosis. Recent studies suggest that MASTL expression is highly upregulated in cancer and confers resistance against chemotherapy. However, the role and mechanism/s of MASTL mediated regulation of tumorigenesis remains poorly understood. METHODS: We utilized a large patient cohort and mouse models of colon cancer as well as colon cancer cells to determine the role of Mastl and associated mechanism in colon cancer. RESULTS: Here, we show that MASTL expression increases in colon cancer across all cancer stages compared with normal colon tissue (P < 0.001). Also, increased levels of MASTL associated with high-risk of the disease and poor prognosis. Further, the shRNA silencing of MASTL expression in colon cancer cells induced cell cycle arrest and apoptosis in vitro and inhibited xenograft-tumor growth in vivo. Mechanistic analysis revealed that MASTL expression facilitates colon cancer progression by promoting the ß-catenin/Wnt signaling, the key signaling pathway implicated in colon carcinogenesis, and up-regulating anti-apoptotic proteins, Bcl-xL and Survivin. Further studies where colorectal cancer (CRC) cells were subjected to 5-fluorouracil (5FU) treatment revealed a sharp increase in MASTL expression upon chemotherapy, along with increases in Bcl-xL and Survivin expression. Most notably, inhibition of MASTL in these cells induced chemosensitivity to 5FU with downregulation of Survivin and Bcl-xL expression. CONCLUSION: Overall, our data shed light on the heretofore-undescribed mechanistic role of MASTL in key oncogenic signaling pathway/s to regulate colon cancer progression and chemo-resistance that would tremendously help to overcome drug resistance in colon cancer treatment.


Subject(s)
Colonic Neoplasms/pathology , Drug Resistance, Neoplasm , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Up-Regulation , Caco-2 Cells , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Neoplasm Staging , Neoplasm Transplantation , Prognosis , Survival Analysis , Wnt Signaling Pathway
11.
Semin Cell Dev Biol ; 42: 58-65, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26025580

ABSTRACT

The role of the tight junctions (TJ) in controlling paracellular traffic of ions and molecules, through the regulation of claudin proteins, is now established. However, it has also become increasingly evident that claudin proteins, as integral components of the TJs, play crucial role in maintaining the cell-cell integrity. In conformity, deregulation of claudin expression and cellular distribution in cancer tissues has been widely documented and correlated with cancer progression and metastasis. However, this correlation is not unidirectional and rather suggests tissue specific regulations. Irrespective, if the widely described correlations between altered claudin expression and cancer initiation/progression could be established, they may serve as important markers for prognostic purposes and potential therapeutic targets. In this review, we summarize data from screening of the cancer tissues, manipulation of claudin expression in cells and animals subjected to cancer models, and how claudins are regulated in cancer. The focus of this article remains analysis of the association between cancer and the claudins and to decipher clinical relevance.


Subject(s)
Claudins/metabolism , Neoplasms/pathology , Animals , Claudins/genetics , DNA Methylation , Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Gene Expression Regulation , Humans
12.
Pflugers Arch ; 469(1): 69-75, 2017 01.
Article in English | MEDLINE | ID: mdl-27988840

ABSTRACT

Environment affects an individual's development and disease risk which then suggest that the environmental cues must have ways of reaching to the cellular nuclei to orchestrate desired genetic changes. Polarized and differentiated epithelial cells join together by cell-cell adhesions to create a protective sheet which separates body's internal milieu from its environment, albeit in highly regulated manner. Among these cell-cell adhesions, a key role of tight junction, the apical cell-cell adhesion, in maintaining epithelial cell polarity and differentiation is well recognized. Moreover, significant changes in expression and cellular distribution of claudin proteins, integral component of the tight junction, characterize pathophysiological changes including neoplastic growth and progression. Studies have further confirmed existence of complex claudin-based interactomes and demonstrated that changes in such protein partnering can influence barrier integrity and communication between a cell and its environment to produce undesired outcome. Cell signaling is the process by which cells respond to their environment to make dynamic decisions to live, grow and proliferate, or die. Thus, pivotal role of the deregulated tight junction structure/function in influencing cellular signaling cascades to alter cellular phenotype can be envisaged, however, is not well understood. Needless to mention that advanced knowledge in this area can help improve therapeutic considerations and preventive measures. Here, we discuss potential role of the tight junction in the regulation of "outside-in" signaling to regulate cancer growth, with specific focus upon the claudin family of proteins.


Subject(s)
Carcinogenesis/metabolism , Claudins/metabolism , Signal Transduction/physiology , Animals , Epithelial Cells/metabolism , Humans , Tight Junctions/metabolism
13.
Exp Cell Res ; 349(1): 119-127, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27742576

ABSTRACT

Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells cultured in the presence of TNF-α (10ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.


Subject(s)
Adenocarcinoma/pathology , Cell Movement/drug effects , Claudin-1/metabolism , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Adenocarcinoma/metabolism , Biomarkers, Tumor/metabolism , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Knockdown Techniques , HT29 Cells , Humans , Phosphorylation/drug effects , src-Family Kinases/metabolism
14.
Semin Cancer Biol ; 35 Suppl: S276-S304, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26590477

ABSTRACT

Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.


Subject(s)
Genetic Heterogeneity , Molecular Targeted Therapy , Neoplasms/therapy , Precision Medicine , Antineoplastic Agents, Phytogenic/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/prevention & control , Signal Transduction , Tumor Microenvironment/genetics
15.
Carcinogenesis ; 37(3): 223-32, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26762229

ABSTRACT

The Wnt/ß-catenin signaling pathway is indispensable for embryonic development, maintenance of adult tissue homeostasis and repair of epithelial injury. Unsurprisingly, aberrations in this pathway occur frequently in many cancers and often result in increased nuclear ß-catenin. While mutations in key pathway members, such as ß-catenin and adenomatous polyposis coli, are early and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of PDACs, indirect mechanisms such as promoter methylation, increased ligand secretion and decreased pathway inhibitor secretion work in concert to promote aberrant cytosolic/nuclear localization of ß-catenin. Concomitant with alterations in ß-catenin localization, changes in mucin expression and localization have been documented in multiple malignancies. Indeed, numerous studies over the years suggest an intricate and mutually regulatory relationship between mucins (MUCs) and ß-catenin. In the current review, we summarize several studies that describe the relationship between mucins and ß-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer.


Subject(s)
Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Mucins/metabolism , Wnt Signaling Pathway/physiology , Animals , Humans
16.
Gut ; 63(4): 622-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23766441

ABSTRACT

OBJECTIVE: Claudin-1 expression is increased and dysregulated in colorectal cancer and causally associates with the dedifferentiation of colonic epithelial cells, cancer progression and metastasis. Here, we have sought to determine the role claudin-1 plays in the regulation of intestinal epithelial homeostasis. DESIGN: We have used a novel villin-claudin-1 transgenic (Cl-1Tg) mouse as model (with intestinal claudin-1 overexpression). The effect of claudin-1 expression upon colonic epithelial differentiation, lineage commitment and Notch-signalling was determined using immunohistochemical, immunoblot and real-time PCR analysis. The frequently used mouse model of dextran sodium sulfate (DSS)-colitis was used to model inflammation, injury and repair. RESULTS: In Cl-1Tg mice, normal colonocyte differentiation programme was disrupted and goblet cell number and mucin-2 (muc-2) expressions were significantly downregulated while Notch- and ERK1/2-signalling were upregulated, compared with the wild type-littermates. Cl-1Tg mice were also susceptible to colonic inflammation and demonstrated impaired recovery and hyperproliferation following the DSS-colitis. Our data further show that claudin-1 regulates Notch-signalling through the regulation of matrix metalloproteinase-9 (MMP-9) and p-ERK signalling to regulate proliferation and differentiation. CONCLUSIONS: Claudin-1 helps regulate intestinal epithelial homeostasis through the regulation of Notch-signalling. An upregulated claudin-1 expression induces MMP-9 and p-ERK signalling to activate Notch-signalling, which in turn inhibits the goblet cell differentiation. Decreased goblet cell number decreases muc-2 expression and thus enhances susceptibility to mucosal inflammation. Claudin-1 expression also induces colonic epithelial proliferation in a Notch-dependent manner. Our findings may help understand the role of claudin-1 in the regulation of inflammatory bowel diseases and CRC.


Subject(s)
Claudin-1/physiology , Colon/physiology , Receptors, Notch/physiology , Signal Transduction/physiology , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cell Proliferation , Colitis/chemically induced , Colitis/physiopathology , Dextran Sulfate/pharmacology , Disease Models, Animal , Homeostasis/physiology , Intestinal Mucosa/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Real-Time Polymerase Chain Reaction
17.
Mol Cancer ; 13: 167, 2014 Jul 06.
Article in English | MEDLINE | ID: mdl-24997475

ABSTRACT

BACKGROUND: The tight junction protein Claudin-1, a claudin family member, has been implicated in several gastro-intestinal pathologies including inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this regard, we have demonstrated that claudin-1 expression in colon cancer cells potentiates their tumorigenic ability while in vivo expression of claudin-1 in the intestinal epithelial cells (IECs) promotes Notch-activation, inhibits goblet cell differentiation and renders susceptibility to mucosal inflammation. Notably, a key role of inflammation in colon cancer progression is being appreciated. Therefore, we examined whether inflammation plays an important role in claudin-1-dependent upregulation of colon carcinogenesis. METHODS: APCmin mice were crossed with Villin-claudin-1 transgenic mice to generate APC-Cldn1 mice. H&E stained colon tissues were assessed for tumor number, size and histological grade. Additionally, microarray and qPCR analyses of colonic tumors were performed to assess molecular changes due to claudin-1 expression. APC-Cldn1 and APCmin controls were assessed for colonic permeability via rectal administration of FITC-dextran, and bacterial translocation via qPCR analysis of 16S rDNA. RESULTS: Claudin-1 overexpression in APCmin mice significantly increased (~4-fold) colonic tumor growth and size, and decreased survival. Furthermore, transcriptome analysis supported upregulated proliferation, and increased Wnt and Notch-signaling in APC-Cldn1 mice. APC-Cldn1 mice also demonstrated inhibition of mucosal defense genes while expression of pro-inflammatory genes was sharply upregulated, especially the IL-23/IL-17 signaling. We predict that increased Notch/Wnt-signaling underlie the early onset of adenoma formation in APC-Cldn1 mice. An increase in mucosal permeability due to the adenomas and the inherent barrier defect in these mice further facilitate bacterial translocation into the mucosa to induce inflammation, which in turn promote the tumorigenesis. CONCLUSION: Taken together, these results confirm the role of claudin-1 as a promoter of colon tumorigenesis and further identify the role of the dysregulated antigen-tumor interaction and inflammation in claudin-1-dependent upregulation of colon tumorigenesis.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli/genetics , Cell Transformation, Neoplastic/genetics , Claudin-1/biosynthesis , Colonic Neoplasms/genetics , Adenomatous Polyposis Coli/pathology , Animals , Claudin-1/genetics , Colonic Neoplasms/pathology , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Interleukin-23 Subunit p19/biosynthesis , Intestinal Mucosa/metabolism , Intestines/microbiology , Intestines/pathology , Mice , Mucin-2/biosynthesis
18.
Biomolecules ; 14(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38540693

ABSTRACT

Claudins (CLDN1-CLDN24) are a family of tight junction proteins whose dysregulation has been implicated in tumorigeneses of many cancer types. In colorectal cancer (CRC), CLDN1, CLDN2, CLDN4, and CLDN18 have been shown to either be upregulated or aberrantly expressed. In the normal colon, CLDN1 and CLDN3-7 are expressed. Although a few claudins, such as CLDN6 and CLDN7, are expressed in CRC their levels are reduced compared to the normal colon. The present review outlines the expression profiles of claudin proteins in CRC and those that are potential biomarkers for prognostication.


Subject(s)
Claudins , Colorectal Neoplasms , Humans , Claudin-1/genetics , Claudins/genetics , Tight Junction Proteins , Colorectal Neoplasms/genetics
19.
Obes Rev ; 25(8): e13766, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38745386

ABSTRACT

Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.


Subject(s)
Obesity , Tight Junctions , Humans , Intestinal Mucosa/metabolism , Animals
20.
Carcinogenesis ; 34(11): 2610-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23880304

ABSTRACT

Expression of claudin-1, a tight junction protein, is highly upregulated in colon cancer. We have reported that claudin-1 expression in colon cancer cells is epigenetically regulated as histone deacetylase (HDAC) inhibitors decrease claudin-1 messenger RNA (mRNA) stability and thus expression. In this regard, our data suggested a role of the 3'-untranslated region (UTR) in the regulation of HDAC-dependent regulation of claudin-1 mRNA stability. In the current study, we demonstrate, based on our continued investigation, that the ELAV-like RNA-binding proteins (RBPs), human antigen R (HuR) and tristetraprolin (TTP) associate with the 3'-UTR of claudin-1 mRNA to modulate the latter's stability. Ribonomic and site-directed mutagenesis approaches were used to confirm the binding of HuR and TTP to the 3'-UTR of claudin-1. We further confirmed their roles in the stabilization of claudin-1 mRNA, under conditions of HDAC inhibition. In summary, we report that HuR and TTP are the critical regulators of the posttranscriptional regulation of claudin-1 expression in colon cancer cells. We also demonstrate that inhibition of HDACs by trichostatin treatment decreased the binding of HuR while increasing the binding of TTP to the 3'-UTR of claudin-1. Additionally, we provide data showing transcriptional regulation of claudin-1 expression, through the regulation of transcription factor Sp1. Taken together, we demonstrate epigenetic regulation of claudin-1 expression in colon cancer cells at the transcriptional and posttranscriptional levels.


Subject(s)
Breast Neoplasms/genetics , Claudin-1/genetics , Colonic Neoplasms/genetics , ELAV Proteins/metabolism , Hydroxamic Acids/pharmacology , Kidney/metabolism , Tristetraprolin/metabolism , 3' Untranslated Regions/genetics , Base Sequence , Blotting, Western , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cells, Cultured , Chromatin Immunoprecipitation , Claudin-1/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , ELAV Proteins/genetics , Epigenesis, Genetic , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Histone Deacetylase Inhibitors/pharmacology , Humans , Immunoenzyme Techniques , Kidney/drug effects , Kidney/pathology , Molecular Sequence Data , Mutagenesis, Site-Directed , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tristetraprolin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL