Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Anim Breed Genet ; 140(5): 558-567, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37226373

ABSTRACT

About three decades of breeding and selection in the Valle del Belìce sheep are expected to have left several genomic footprints related to milk production traits. In this study, we have assembled a dataset with 451 individuals of the Valle del Belìce sheep breed: 184 animals that underwent directional selection for milk production and 267 unselected animals, genotyped for 40,660 single-nucleotide polymorphisms (SNPs). Three different statistical approaches, both within (iHS and ROH) and between (Rsb) groups, were used to identify genomic regions potentially under selection. Population structure analyses separated all individuals according to their belonging to the two groups. A total of four genomic regions on two chromosomes were jointly identified by at least two statistical approaches. Several candidate genes for milk production were identified, corroborating the polygenic nature of this trait and which may provide clues to potential new selection targets. We also found candidate genes for growth and reproductive traits. Overall, the identified genes may explain the effect of selection to improve the performances related to milk production traits in the breed. Further studies using high-density array data, would be particularly relevant to refine and validate these results.


Subject(s)
Genomics , Multifactorial Inheritance , Animals , Sheep/genetics , Genotype , Phenotype , Polymorphism, Single Nucleotide
2.
J Anim Breed Genet ; 139(5): 540-555, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35445758

ABSTRACT

Purosangue Orientale Siciliano, Sanfratellano and Siciliano represent the Sicilian equine genetic resource. This study aimed to investigate the genetic diversity, population structure and the pattern of autozygosity of Sicilian horse populations using genome-wide single-nucleotide polymorphism (SNP) data generated with the Illumina Equine SNP70 array. The genotyping data of 17 European and Middle East populations were also included in the study. The patterns of genetic differentiation, model-based clustering and Neighbour-Net showed the expected positioning of Sicilian populations within the wide analysed framework and the close connections between the Purosangue Orientale Siciliano and the Arab as well as between Sanfratellano, Siciliano and Maremmano. The highest expected heterozygosity (He ) and contemporary effective population size (cNe) were reported in Siciliano (He  = 0.323, cNe = 397), and the lowest were reported in Purosangue Orientale Siciliano (He  = 0.277, cNe = 10). The analysis of the runs of homozygosity and the relative derived inbreeding revealed high internal homogeneity in Purosangue Orientale Siciliano and Arab horses, intermediate values in Maremmano and Sanfratellano and high heterogeneity in the Siciliano population. The genome-wide SNP analysis showed the selective pressure on Purosangue Orientale Siciliano towards traits related to endurance performance. Our results underline the importance of planning adequate conservation and exploitation programmes to reduce the level of inbreeding and, therefore, the loss of genetic diversity.


Subject(s)
Genome , Inbreeding , Animals , Genome/genetics , Genotype , Homozygote , Horses/genetics , Polymorphism, Single Nucleotide , Population Density
3.
Appl Environ Microbiol ; 87(23): e0152421, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34550766

ABSTRACT

The main goal of this research was to characterize the bacterial diversity of the wooden boards used for aging traditional Sicilian cheeses and to evaluate whether pathogenic bacteria are associated with these surfaces. Eighteen cheese dairy factories producing three traditional cheese typologies (PDO Pecorino Siciliano, PDO Piacentinu Ennese, and Caciocavallo Palermitano) were selected within the region of Sicily. The wooden shelf surfaces were sampled by a destructive method to detach wood splinters as well as by a nondestructive brushing to collect microbial cells. Scanning electron microscopy showed the presence of almost continuous bacterial formations on the majority of the shelves analyzed. Yeasts and fungal hyphae were also visualized, indicating the complexity of the plank communities. The amplicon library of the 16S rRNA gene V3-V4 region was paired-end sequenced using the Illumina MiSeq system, allowing the identification of 14 phyla, 32 classes, 52 orders, 93 families, and 137 genera. Staphylococcus equorum was identified from all wooden surfaces, with a maximum abundance of 64.75%. Among cheese-surface-ripening bacteria, Brevibacterium and Corynebacterium were detected in almost all samples. Several halophilic (Halomonas, Tetragenococcus halophilus, Chromohalobacter, Salimicrobium, Marinococcus, Salegentibacter, Haererehalobacter, Marinobacter, and Idiomarinaceae) and moderately halophilic (Salinicoccus, Psychrobacter, and Salinisphaera) bacteria were frequently identified. Lactic acid bacteria (LAB) were present at low percentages in the genera Leuconostoc, Lactococcus, Lactobacillus, Pediococcus, and Streptococcus. The levels of viable microorganisms on the wooden shelves ranged between 2.4 and 7.8 log CFU/cm2. In some cases, LAB were counted at very high levels (8.2 log CFU/cm2). Members of the Enterobacteriaceae family were detected in a viable state for only six samples. Coagulase-positive staphylococci, Salmonella spp., and Listeria monocytogenes were not detected. Seventy-five strains belonged to the genera Leuconostoc, Lactococcus, Pediococcus, Enterococcus, Lactobacillus, and Weissella. IMPORTANCE This study provides evidence for the lack of pathogenic bacteria on the wooden shelves used to ripen internal bacterially ripened semihard and hard cheeses produced in Sicily. These three cheeses are not inoculated on their surfaces, and surface ripening is not considered to occur or, at least, does not occur at the same extent as surface-inoculated smear cheeses. Several bacterial groups identified from the wooden shelves are typically associated with smear cheeses, strongly suggesting that PDO Pecorino Siciliano, PDO Piacentinu Ennese, and Caciocavallo Palermitano cheese rind contributes to their final organoleptic profiles.


Subject(s)
Cheese , Food Microbiology , Food Storage/instrumentation , Wood , Cheese/microbiology , Food Contamination/analysis , RNA, Ribosomal, 16S/genetics , Sicily
4.
J Anim Breed Genet ; 138(5): 552-561, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34014003

ABSTRACT

The aim of this study was to identify genomic regions underlying milk production traits in the Valle del Belice dairy sheep using regional heritability mapping (RHM). Repeated measurements for milk yield (MY), fat percentage and yield (F% and FY) and protein percentage and yield (P% and PY), collected over a period of 6 years (2006-2012) on 481 Valle del Belice ewes, were used for the analysis. Animals were genotyped with the Illumina 50k SNP chip. Variance components, heritabilities and repeatabilities within and across lactations were estimated, fitting parity, litter size, season of lambing and fortnights in milk, as fixed; and additive genetic, permanent environment within and across lactations, flock by test-day interaction and residual as random effects. For the RHM analysis, the model included the same fixed and random effects as before, plus an additional regional genomic additive effect (specific for the region being tested) as random. While the whole genomic additive effect was estimated using the genomic relationship matrix (GRM) constructed from all SNPs, the regional genomic additive effect was estimated from a GRM matrix constructed from the SNPs within each region. Heritability estimates ranged between 0.06 and 0.15, with repeatabilities being between 0.14 and 0.24 across lactations and between 0.23 and 0.39 within lactation for all milk production traits. A substantial effect of flock-test-day on milk production traits was also estimated. Significant genomic regions at either genome-wide (p < .05) or suggestive (i.e., one false positive per genome scan) level were identified on chromosome (OAR) 2, 3 and 20 for F% and on OAR3 for P%, with the regions on OAR3 in common between the two traits. Our results confirmed the role of LALBA and AQP genes, on OAR3, as candidate genes for milk production traits in sheep.


Subject(s)
Lactation , Milk , Sheep, Domestic/genetics , Animals , Female , Genomics , Lactation/genetics , Phenotype , Pregnancy , Sheep/genetics
5.
Food Microbiol ; 87: 103385, 2020 May.
Article in English | MEDLINE | ID: mdl-31948626

ABSTRACT

The present work was carried out to evaluate the microbiological and physicochemical composition of salamis produced with the meat of beef, horse, wild boar and pork. Salami productions occurred under controlled laboratory conditions to exclude butchery environmental contaminations, without the addition of nitrate and nitrite. All trials were monitored during the ripening (13 °C and 90% relative humidity) extended until 45 d. The evolution of physicochemical parameters showed that beef and pork salamis were characterized by a higher content of branched chain fatty acids (FA) and rumenic acid than horse and wild boar salamis, whereas the last two productions showed higher values of secondary lipid oxidation. Plate counts showed that lactic acid bacteria (LAB), yeasts and coagulase-negative staphylococci (CNS) populations dominated the microbial community of all productions with Lactobacillus and Staphylococcus as most frequently isolated bacteria. The microbial diversity evaluated by MiSeq Illumina showed the presence of members of Gammaproteobacteria phylum, Moraxellaceae family, Acinetobacter, Pseudomonas, Carnobacterium and Enterococcus in all salamis. This study showed the natural evolution of indigenous fermented meat starter cultures and confirmed a higher suitability of horse and beef meat for nitrate/nitrite free salami production due to their hygienic quality at 30 d.


Subject(s)
Fermented Foods/microbiology , Meat Products/microbiology , Animals , Cattle , Fermentation , Fermented Foods/analysis , Food Microbiology , Horses , Lactobacillales/genetics , Lactobacillales/growth & development , Lactobacillales/isolation & purification , Meat Products/analysis , Red Meat/microbiology , Staphylococcus/genetics , Staphylococcus/growth & development , Staphylococcus/isolation & purification , Sus scrofa , Swine
6.
Genet Sel Evol ; 50(1): 35, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29940848

ABSTRACT

BACKGROUND: In the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array. RESULTS: After quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding. CONCLUSIONS: This study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.


Subject(s)
Animals, Domestic/genetics , Conservation of Natural Resources/methods , Genetic Variation , Polymorphism, Single Nucleotide , Animals , Breeding , Cattle , Evolution, Molecular , Genetics, Population , Genome-Wide Association Study , Linkage Disequilibrium , Phylogeny , Population Density
7.
Food Microbiol ; 73: 298-304, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29526216

ABSTRACT

Microbiological, chemical and physical parameters of minimally processed red chicory (Cichorium intybus L.) subjected to two different transformation processes were investigated. A classic ready-to-eat (RTE) process (P1) and a production without cutting (P2) were monitored during refrigerated (4 °C) storage (15 d). Total mesophilic microorganisms, total psychrotrophic microorganisms and pseudomonads were detected at the highest cell densities in all samples. Presumptive Pseudomonas population dominated the cultivable microbial community of RTE red chicory and were characterized genetically. Twenty-two randomly amplified polymorphic DNA (RAPD) types were investigated by 16S rRNA gene sequencing, resulting in members of Rahnella and Pseudomonas. The identification of Pseudomonas species was further determined by sequencing of gyrB, rpoB and rpoD genes resulting in 16 species. A highest visual quality and a lower weight loss and colour variation were registered for P2, while soluble solid, nitrate and ascorbic acid contents were not affected by processing and storage. The integrated microbiological, chemical and physical approach applied in this study demonstrated the longer shelf-life of P2 red chicory.


Subject(s)
Cichorium intybus/microbiology , Food Storage/methods , Pseudomonas/isolation & purification , Vegetables/microbiology , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas/growth & development , Random Amplified Polymorphic DNA Technique
8.
Genet Sel Evol ; 49(1): 84, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29137622

ABSTRACT

BACKGROUND: Because very large numbers of single nucleotide polymorphisms (SNPs) are now available throughout the genome, they are particularly suitable for the detection of genomic regions where a reduction in heterozygosity has occurred and they offer new opportunities to improve the accuracy of inbreeding ([Formula: see text]) estimates. Runs of homozygosity (ROH) are contiguous lengths of homozygous segments of the genome where the two haplotypes inherited from the parents are identical. Here, we investigated the occurrence and distribution of ROH using a medium-dense SNP panel to characterize autozygosity in 516 Valle del Belice sheep and to identify the genomic regions with high ROH frequencies. RESULTS: We identified 11,629 ROH and all individuals displayed at least one ROH longer than 1 Mb. The mean value of [Formula: see text] estimated from ROH longer than1 Mb was 0.084 ± 0.061. ROH that were shorter than 10 Mb predominated. The highest and lowest coverages of Ovis aries chromosomes (OAR) by ROH were on OAR24 and OAR1, respectively. The number of ROH per chromosome length displayed a specific pattern, with higher values for the first three chromosomes. Both number of ROH and length of the genome covered by ROH varied considerably between animals. Two hundred and thirty-nine SNPs were considered as candidate markers that may be under directional selection and we identified 107 potential candidate genes. Six genomic regions located on six chromosomes, corresponding to ROH islands, are presented as hotspots of autozygosity, which frequently coincided with regions of medium recombination rate. According to the KEGG database, most of these genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. A genome scan revealed the presence of ROH islands in genomic regions that harbor candidate genes for selection in response to environmental stress and which underlie local adaptation. CONCLUSIONS: These results suggest that natural selection has, at least partially, a role in shaping the genome of Valle del Belice sheep and that ROH in the ovine genome may help to detect genomic regions involved in the determinism of traits under selection.


Subject(s)
Genetics, Population , Homozygote , Inbreeding , Polymorphism, Single Nucleotide/genetics , Sheep/genetics , Animals , Chromosomes/genetics , Genotype , Selection, Genetic
9.
Food Microbiol ; 67: 17-22, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28648289

ABSTRACT

This study aimed to evaluate the levels of enteric bacteria in ice cubes produced in different environments (home-made, prepared in bars and pubs with ice machines and produced in industrial plants) and to determine their survival in different alcoholic beverages and soft drinks. Members of the Enterobacteriaceae family were found in almost all samples analysed. All industrial and the majority of home-made samples did not contain coliforms. Enterococci were not identified in domestic samples while they were detected in two industrial and three bar/pub samples. The samples collected from bars and pubs were characterized by the highest levels of enteric bacteria. Fourteen strains representing 11 species of eight bacterial genera were identified, some of which are known agents of human infections. The most numerous groups included Enterococcus and Stenotrophomonas. The survival of Enterococcus faecium ICE41, Pantoea conspicua ICE80 and Stenotrophomonas maltophilia ICE272, that were detected at the highest levels (100-400 CFU/100 mL thawed ice) in the ice cubes, was tested in six drinks and beverages characterized by different levels of alcohol, CO2, pH and the presence of antibacterial ingredients. The results showed a species-specific behaviour and, in general, a reduction of the microbiological risks associated with ice after its transfer to alcoholic or carbonated beverages.


Subject(s)
Alcoholic Beverages/microbiology , Carbonated Beverages/microbiology , Enterobacteriaceae/growth & development , Enterobacteriaceae/isolation & purification , Ice/analysis , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Food Contamination/analysis , Microbial Viability
10.
Food Microbiol ; 62: 256-269, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27889157

ABSTRACT

The present work was carried out to retrieve the origin of lactic acid bacteria (LAB) in sourdough. To this purpose, wheat LAB were monitored from ear harvest until the first step of fermentation for sourdough development. The influence of the geographical area and variety on LAB species/strain composition was also determined. The ears of four Triticum durum varieties (Duilio, Iride, Saragolla and Simeto) were collected from several fields located within the Palermo province (Sicily, Italy) and microbiologically investigated. In order to trace the transfer of LAB during the consecutive steps of manipulation, ears were transformed aseptically and, after threshing, milling and fermentation, samples of kernels, semolinas and doughs, respectively, were analysed. LAB were not found to dominate the microbial communities of the raw materials. In general, kernels harboured lower levels of microorganisms than ears and ears than semolinas. Several samples showing no development of LAB colonies acidified the enrichment broth suggesting the presence of LAB below the detection limit. After fermentation, LAB loads increased consistently for all doughs, reaching levels of 7.0-7.5 Log CFU/g on M17. The values of pH (5.0) and TTA (5.6 mL NaOH/10 g of dough) indicated the occurrence of the acidification process for several doughs. LAB were phenotypically and genotypically differentiated by randomly amplified polymorphic DNA (RAPD)-PCR into eight groups including 51 strains belonging to the species Lactobacillus brevis, Lactobacillus coryniformis, Lactobacillus plantarum, Lactococcus lactis, Lactococcus garvieae, Enterococcus casseliflavus, Enterococcus faecium, Leuconostoc citreum, and Pediococcus pentosaceus. Lactobacilli constituted a minority the LAB community, while lactococci represented more than 50% of strains. Lower LAB complexity was found on kernels, while a richer biodiversity was observed in semolinas and fermented doughs. For broader microbiota characterisation in doughs before fermentation, the 16S rRNA gene fragment profiling was conducted on the unfermented doughs using MiSeq Illumina. LAB group was represented by Enterococcus, Lactococcus and members of Leuconostocaceae family whose relative abundances differed according to both geographical area and variety of wheat. The culture-independent approach confirmed that pediococci and lactobacilli constituted low abundance members of the semolina LAB microbiota and that although some strains may pass from wheat ear to fermented doughs, most are likely to come from other sources.


Subject(s)
Flour/microbiology , Lactobacillales/isolation & purification , Triticum/microbiology , Bacterial Load , Biodiversity , Bread/analysis , Bread/microbiology , Fermentation , Flour/analysis , Food Microbiology , Genotype , Italy , Lactobacillales/genetics , Lactobacillus/genetics , Lactobacillus/isolation & purification , Leuconostoc/genetics , Leuconostoc/isolation & purification , Pediococcus/genetics , Pediococcus/isolation & purification , Phenotype , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique , Triticum/anatomy & histology
11.
Appl Environ Microbiol ; 82(2): 585-95, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26546430

ABSTRACT

Three Lactococcus lactis subsp. cremoris strains were used to develop ad hoc biofilms on the surfaces of virgin wooden vats used for cheese production. Two vats (TZ) were tested under controlled conditions (pilot plant), and two vats (TA) were tested under uncontrolled conditions (industrial plant). In each plant, one vat (TA1 and TZ1) was used for the control, traditional production of PDO Vastedda della Valle del Belìce (Vastedda) cheese, and one (TA2 and TZ2) was used for experimental production performed after lactococcal biofilm activation and the daily addition of a natural whey starter culture (NWSC). Microbiological and scanning electron microscopy analyses showed differences in terms of microbial levels and composition of the neoformed biofilms. The levels of the microbial groups investigated during cheese production showed significant differences between the control trials and between the control and experimental trials, but the differences were not particularly marked between the TA2 and TZ2 productions, which showed the largest numbers of mesophilic lactic acid bacterium (LAB) cocci. LAB populations were characterized phenotypically and genotypically, and 44 dominant strains belonging to 10 species were identified. Direct comparison of the polymorphic profiles of the LAB collected during cheese making showed that the addition of the NWSC reduced their biodiversity. Sensory evaluation showed that the microbial activation of the wooden vats with the multistrain Lactococcus culture generated cheeses with sensory attributes comparable to those of commercial cheese. Thus, neoformed biofilms enable a reduction of microbial variability and stabilize the sensorial attributes of Vastedda cheese.


Subject(s)
Bacteria/isolation & purification , Biofilms , Cheese/microbiology , Food Microbiology/instrumentation , Lactococcus lactis/metabolism , Wood/microbiology , Adult , Animals , Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena , Biodiversity , Cheese/analysis , Female , Humans , Male , Middle Aged , Milk/microbiology , Taste
12.
BMC Genet ; 15: 108, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25928374

ABSTRACT

BACKGROUND: The recent availability of sheep genome-wide SNP panels allows providing background information concerning genome structure in domestic animals. The aim of this work was to investigate the patterns of linkage disequilibrium (LD), the genetic diversity and population structure in Valle del Belice, Comisana, and Pinzirita dairy sheep breeds using the Illumina Ovine SNP50K Genotyping array. RESULTS: Average r (2) between adjacent SNPs across all chromosomes was 0.155 ± 0.204 for Valle del Belice, 0.156 ± 0.208 for Comisana, and 0.128 ± 0.188 for Pinzirita breeds, and some variations in LD value across chromosomes were observed, in particular for Valle del Belice and Comisana breeds. Average values of r (2) estimated for all pairwise combinations of SNPs pooled over all autosomes were 0.058 ± 0.023 for Valle del Belice, 0.056 ± 0.021 for Comisana, and 0.037 ± 0.017 for Pinzirita breeds. The LD declined as a function of distance and average r (2) was lower than the values observed in other sheep breeds. Consistency of results among the several used approaches (Principal component analysis, Bayesian clustering, F ST, Neighbor networks) showed that while Valle del Belice and Pinzirita breeds formed a unique cluster, Comisana breed showed the presence of substructure. In Valle del Belice breed, the high level of genetic differentiation within breed, the heterogeneous cluster in Admixture analysis, but at the same time the highest inbreeding coefficient, suggested that the breed had a wide genetic base with inbred individuals belonging to the same flock. The Sicilian breeds were characterized by low genetic differentiation and high level of admixture. Pinzirita breed displayed the highest genetic diversity (He, Ne) whereas the lowest value was found in Valle del Belice breed. CONCLUSIONS: This study has reported for the first time estimates of LD and genetic diversity from a genome-wide perspective in Sicilian dairy sheep breeds. Our results indicate that breeds formed non-overlapping clusters and are clearly separated populations and that Comisana sheep breed does not constitute a homogenous population. The information generated from this study has important implications for the design and applications of association studies as well as for development of conservation and/or selection breeding programs.


Subject(s)
Sheep, Domestic/genetics , Animals , Bayes Theorem , Breeding , Genome-Wide Association Study , Linkage Disequilibrium , Models, Genetic , Phylogeny , Polymorphism, Single Nucleotide , Principal Component Analysis , Sicily
13.
Food Microbiol ; 36(2): 343-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24010616

ABSTRACT

Lactic acid bacteria (LAB) were analysed from wheat flours used in traditional bread making throughout Sicily (southern Italy). Plate counts, carried out in three different media commonly used to detect food and sourdough LAB, revealed a maximal LAB concentration of approximately 4.75 Log CFU g(-1). Colonies representing various morphological appearances were isolated and differentiated based on phenotypic characteristics and genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR. Fifty unique strains were identified. Analysis by 16S rRNA gene sequencing grouped the strains into 11 LAB species, which belonged to six genera: Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella. Weissella cibaria, Lactobacillus plantarum, Leuconostoc pseudomesenteroides and Leuconostoc citreum were the most prevalent species. The strains were not geographically related. Denaturing gradient gel electrophoresis (DGGE) analysis of total DNA of flour was used to provide a more complete understanding of the LAB population; it confirmed the presence of species identified with the culture-dependent approach, but did not reveal the presence of any additional LAB species. Finally, the technological characteristics (acidifying capacity, antimicrobial production, proteolytic activity, organic acid, and volatile organic compound generation) of the 50 LAB strains were investigated. Eleven strains were selected for future in situ applications.


Subject(s)
Biodiversity , Flour/microbiology , Lactobacillaceae/isolation & purification , Lactobacillaceae/metabolism , Triticum/microbiology , Acids/metabolism , Bacterial Proteins/metabolism , Industrial Microbiology , Lactic Acid/metabolism , Lactobacillaceae/classification , Lactobacillaceae/genetics , Peptide Hydrolases/metabolism , Phylogeny
14.
Int J Food Microbiol ; 394: 110188, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36989928

ABSTRACT

In this study, PDO Provola dei Nebrodi cheese was deeply characterized for its bacterial community and chemical composition. Four dairy factories (A-D) were monitored from milk to ripened cheese. Wooden vat biofilms were dominated by thermophilic rod LAB (4.6-6.5 log CFU/cm2). Bulk milk showed consistent levels of total mesophilic microorganisms (TMM) (5.0-6.0 log CFU/mL) and, after curdling, a general increase was recorded. The identification of the dominant LAB in wooden vat biofilms and ripened cheeses showed that the majority of wooden vat LAB were lactococci and Streptococcus thermophilus, while cheese LAB mainly belonged to Lacticaseibacillus paracasei and Enterococcus. Illumina sequencing identified 22 taxonomic groups; streptococci, lactococci, lactobacilli and other LAB constituted the majority of the total relative abundance % of the wooden vat (69.01-97.58 %) and cheese (81.57-99.87 %) bacterial communities. Regarding chemical composition, the effect of dairy factories was significant only for protein content. Inside cheese color was lighter and yellower than surface. Differences in fatty acids regarded only myristic acid and total amount of monounsaturated fatty acids. The sensory evaluation indicated some differences among cheeses produced in the four dairies regarding color, homogeneity of structure, overall intensity, salty, spicy, and hardness. The integrated approach applied in this study showed that PDO Provola dei Nebrodi cheese characteristics are quite stable among the dairy factories analyzed and this has to be unavoidably imputed to the application of the same cheese making protocol among different dairies.


Subject(s)
Cheese , Animals , Cheese/microbiology , Streptococcus , Lactobacillus , Streptococcus thermophilus/metabolism , Enterococcus , Lactococcus , Milk/microbiology
15.
Mar Pollut Bull ; 189: 114792, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36921451

ABSTRACT

Gathering comprehensive marine biodiversity data can be difficult, costly and time consuming, preventing adequate knowledge of diversity patterns in many areas worldwide. We propose fishing ports as "natural" sinks of biodiversity information collected by fishing vessels probing disparate habitats, depths, and environments. By combining rapid environmental DNA metabarcoding (eDNA) surveys and data from public registers and Automatic Identification Systems, we show significant positive relationships between fishing fleet activities (i.e. fishing effort and characteristics of the fishing grounds) and the taxonomic fish assemblage composition in eleven Mediterranean fishing ports. Overall, we identified 160 fish and 123 invertebrate OTUs, including at least seven non-indigenous species, in some instances well beyond their known distribution areas. Our findings suggest that eDNA assessments of fishing harbours' waters might offer a rapid way to monitor marine biodiversity in unknown or under-sampled areas, as well as to reconstruct fishing catches, often underreported in several regions.


Subject(s)
Ecosystem , Hunting , Animals , Mediterranean Sea , Biodiversity , Invertebrates , DNA Barcoding, Taxonomic , Fishes
16.
Poult Sci ; 102(7): 102692, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37120867

ABSTRACT

Italy counts a large number of local chicken populations, some without a recognized genetic structure, such as Val Platani (VPL) and Cornuta (COS), which represent noteworthy local genetic resources. In this study, the genotype data of 34 COS and 42 VPL, obtained with the Affymetrix Axiom600KChicken Genotyping Array, were used with the aim to investigate the genetic diversity, the runs of homozygosity (ROH) pattern, as well as the population structure and relationship within the framework of other local Italian and commercial chickens. The genetic diversity indices, estimated using different approaches, displayed moderate levels of genetic diversity in both populations. The identified ROH hotspots harbored genes related to immune response and adaptation to local hot temperatures. The results on genetic relationship and population structure reported a clear clustering of the populations according to their geographic origin. The COS formed a nonoverlapping genomic cluster and clearly separated from the other populations, but showed evident proximity to the Siciliana breed (SIC). The VPL highlighted intermediate relationships between the COS-SIC group and the rest of the sample, but closer to the other Italian local chickens. Moreover, VPL showed a complex genomic structure, highlighting the presence of 2 subpopulations that match with the different source of the samples. The results obtained from the survey on genetic differentiation underline the hypothesis that Cornuta is a population with a defined genetic structure. The substructure that characterizes the Val Platani chicken is probably the consequence of the combined effects of genetic drift, small population size, reproductive isolation, and inbreeding. These findings contribute to the understanding of genetic diversity and population structure, and represent a starting point for designing programs to monitor and safeguard these local genetic resources, in order to define a possible official recognition program as breeds.


Subject(s)
Chickens , Polymorphism, Single Nucleotide , Animals , Chickens/genetics , Genotype , Inbreeding , Genome , Genetic Variation
17.
Sci Rep ; 12(1): 8834, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614300

ABSTRACT

Copy number variants (CNVs) are a type of genetic polymorphism which contribute to phenotypic variation in several species, including livestock. In this study, we used genomic data of 192 animals from 3 Iranian sheep breeds including 96 Baluchi sheep and 47 Lori-Bakhtiari sheep as fat-tailed breeds and 47 Zel sheep as thin-tailed sheep breed genotyped with Illumina OvineSNP50K Beadchip arrays. Also, for association test, 70 samples of Valle del Belice sheep were added to the association test as thin-tailed sheep breed. PennCNV and CNVRuler software were, respectively, used to study the copy number variation and genomic association analyses. We detected 573 and 242 CNVs in the fat and thin tailed breeds, respectively. In terms of CNV regions (CNVRs), these represented 328 and 187 CNVRs that were within or overlapping with 790 known Ovine genes. The CNVRs covered approximately 73.85 Mb of the sheep genome with average length 146.88 kb, and corresponded to 2.6% of the autosomal genome sequence. Five CNVRs were randomly chosen for validation, of which 4 were experimentally confirmed using Real time qPCR. Functional enrichment analysis showed that genes harbouring CNVs in thin-tailed sheep were involved in the adaptive immune response, regulation of reactive oxygen species biosynthetic process and response to starvation. In fat-tailed breeds these genes were involved in cellular protein modification process, regulation of heart rate, intestinal absorption, olfactory receptor activity and ATP binding. Association test identified one copy gained CNVR on chromosomes 6 harbouring two protein-coding genes HGFAC and LRPAP1. Our findings provide information about genomic structural changes and their association to the interested traits including fat deposition and environmental compatibility in sheep.


Subject(s)
DNA Copy Number Variations , Genome , Animals , Genotype , Iran , Phenotype , Polymorphism, Single Nucleotide , Sheep/genetics
18.
Animals (Basel) ; 12(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35049839

ABSTRACT

Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.

19.
Animals (Basel) ; 12(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35565582

ABSTRACT

The objective of this study was to uncover genomic regions explaining a substantial proportion of the genetic variance in milk production traits and somatic cell score in a Valle del Belice dairy sheep. Weighted single-step genome-wide association studies (WssGWAS) were conducted for milk yield (MY), fat yield (FY), fat percentage (FAT%), protein yield (PY), protein percentage (PROT%), and somatic cell score (SCS). In addition, our aim was also to identify candidate genes within genomic regions that explained the highest proportions of genetic variance. Overall, the full pedigree consists of 5534 animals, of which 1813 ewes had milk data (15,008 records), and 481 ewes were genotyped with a 50 K single nucleotide polymorphism (SNP) array. The effects of markers and the genomic estimated breeding values (GEBV) of the animals were obtained by five iterations of WssGBLUP. We considered the top 10 genomic regions in terms of their explained genomic variants as candidate window regions for each trait. The results showed that top ranked genomic windows (1 Mb windows) explained 3.49, 4.04, 5.37, 4.09, 3.80, and 5.24% of the genetic variances for MY, FY, FAT%, PY, PROT%, and total SCS, respectively. Among the candidate genes found, some known associations were confirmed, while several novel candidate genes were also revealed, including PPARGC1A, LYPLA1, LEP, and MYH9 for MY; CACNA1C, PTPN1, ROBO2, CHRM3, and ERCC6 for FY and FAT%; PCSK5 and ANGPT1 for PY and PROT%; and IL26, IFNG, PEX26, NEGR1, LAP3, and MED28 for SCS. These findings increase our understanding of the genetic architecture of six examined traits and provide guidance for subsequent genetic improvement through genome selection.

20.
Animals (Basel) ; 12(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36290231

ABSTRACT

Italy contains a large number of local goat populations, some of which do not have a recognized genetic structure. The "Mascaruna" is a goat population reared for milk production in Sicily. In this study, a total of 72 individuals were genotyped with the Illumina Goat_IGGC_65K_v2 BeadChip with the aim to characterize the genetic diversity, population structure and relatedness with another 31 Italian goat populations. The results displayed a moderate level of genetic variability for Mascaruna, in concordance with the estimated values for Italian goats. Runs of homozygosity islands are linked to genes involved in milk production, immune response and local adaptation. Population structure analyses separated Mascaruna from the other goat populations, indicating a clear genetic differentiation. Although they are not conclusive, our current results represent a starting point for the creation of monitoring and conservation plans. Additional analyses and a wider sampling would contribute to refine and validate these results. Finally, our study describing the diversity and structure of Mascaruna confirms the usefulness of applied genomic analyses as valid tools for the study of the local uncharacterized genetic resources.

SELECTION OF CITATIONS
SEARCH DETAIL