Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Publication year range
1.
Blood ; 143(14): 1414-1424, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38142407

ABSTRACT

ABSTRACT: There is significant ongoing debate regarding type 1 von Willebrand disease (VWD) defintion. Previous guidelines recommended patients with von Willebrand factor (VWF) levels <30 IU/dL be diagnosed type 1 VWD, whereas patients with significant bleeding and VWF levels from 30 to 50 IU/dL be diagnosed with low VWF. To elucidate the relationship between type 1 VWD and low VWF in the context of age-induced increases in VWF levels, we combined data sets from 2 national cohort studies: 162 patients with low VWF from the Low VWF in Ireland Cohort (LoVIC) and 403 patients with type 1 VWD from the Willebrand in The Netherlands (WiN) studies. In 47% of type 1 VWD participants, VWF levels remained <30 IU/dL despite increasing age. Conversely, VWF levels increased to the low VWF range (30-50 IU/dL) in 30% and normalized (>50 IU/dL) in 23% of type 1 VWD cases. Crucially, absolute VWF antigen (VWF:Ag) levels and increase of VWF:Ag per year overlapped between low VWF and normalized type 1 VWD participants. Moreover, multiple regression analysis demonstrated that VWF:Ag levels in low VWF and normalized type 1 VWD patients would not have been different had they been diagnosed at the same age (ß = 0.00; 95% confidence interval, -0.03 to 0.04). Consistently, no difference was found in the prevalence of VWF sequence variants; factor VIII activity/VWF:Ag or VWF propeptide/VWF:Ag ratios; or desmopressin responses between low VWF and normalized type 1 VWD patients. In conclusion, our findings demonstrate that low VWF does not constitute a discrete clinical or pathological entity. Rather, it is part of an age-dependent type 1 VWD evolving phenotype. Collectively, these data have important implications for future VWD classification criteria.


Subject(s)
von Willebrand Disease, Type 1 , von Willebrand Diseases , Humans , von Willebrand Factor/genetics , von Willebrand Disease, Type 1/diagnosis , Netherlands/epidemiology , von Willebrand Diseases/diagnosis , von Willebrand Diseases/genetics , Hemorrhage/pathology
2.
Arterioscler Thromb Vasc Biol ; 44(2): e39-e53, 2024 02.
Article in English | MEDLINE | ID: mdl-38126172

ABSTRACT

BACKGROUND: Platelet-rich thrombi occlude arteries causing fatal infarcts like heart attacks and strokes. Prevention of thrombi by current antiplatelet agents can cause major bleeding. Instead, we propose using N-acetyl cysteine (NAC) to act against the protein VWF (von Willebrand factor), and not platelets, to prevent arterial thrombi from forming. METHODS: NAC was assessed for its ability to prevent arterial thrombosis by measuring platelet accumulation rate and occlusion time using a microfluidic model of arterial thrombosis with human blood. Acute clot formation, clot stability, and tail bleeding were measured in vivo with the murine modified Folts model. The effect of NAC in the murine model after 6 hours was also measured to determine any persistent effects of NAC after it has been cleared from the blood. RESULTS: We demonstrate reduction of thrombi formation following treatment with NAC in vitro and in vivo. Human whole blood treated with 3 or 5 mmol/L NAC showed delayed thrombus formation 2.0× and 3.7× longer than control, respectively (P<0.001). Blood treated with 10 mmol/L NAC did not form an occlusive clot, and no macroscopic platelet aggregation was visible (P<0.001). In vivo, a 400-mg/kg dose of NAC prevented occlusive clots from forming in mice without significantly affecting tail bleeding times. A lower dose of NAC significantly reduced clot stability. Mice given multiple injections showed that NAC has a lasting and cumulative effect on clot stability, even after being cleared from the blood (P<0.001). CONCLUSIONS: Both preclinical models demonstrate that NAC prevents thrombus formation in a dose-dependent manner without significantly affecting bleeding time. This work highlights a new pathway for preventing arterial thrombosis, different from antiplatelet agents, using an amino acid derivative as an antithrombotic therapeutic.


Subject(s)
Thromboembolism , Thrombosis , Mice , Humans , Animals , Platelet Aggregation Inhibitors/pharmacology , Acetylcysteine/pharmacology , Thrombosis/chemically induced , Thrombosis/prevention & control , Thrombosis/drug therapy , Platelet Aggregation , Blood Platelets/metabolism , Hemorrhage/metabolism , von Willebrand Factor/metabolism
3.
Blood ; 139(22): 3264-3277, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35167650

ABSTRACT

The inherited thrombocytopenia syndromes are a group of disorders characterized primarily by quantitative defects in platelet number, though with a variety demonstrating qualitative defects and/or extrahematopoietic findings. Through collaborative international efforts applying next-generation sequencing approaches, the list of genetic syndromes that cause thrombocytopenia has expanded significantly in recent years, now with over 40 genes implicated. In this review, we focus on what is known about the genetic etiology of inherited thrombocytopenia syndromes and how the field has worked to validate new genetic discoveries. We highlight the important role for the clinician in identifying a germline genetic diagnosis and strategies for identifying novel causes through research-based endeavors.


Subject(s)
Thrombocytopenia , Blood Platelets , High-Throughput Nucleotide Sequencing , Humans , Platelet Count , Syndrome , Thrombocytopenia/diagnosis , Thrombocytopenia/genetics
4.
Blood ; 139(14): 2240-2251, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35143643

ABSTRACT

von Willebrand factor (VWF) plays a key role in normal hemostasis, and deficiencies of VWF lead to clinically significant bleeding. We sought to identify novel modifiers of VWF levels in endothelial colony-forming cells (ECFCs) using single-cell RNA sequencing (scRNA-seq). ECFCs were isolated from patients with low VWF levels (plasma VWF antigen levels between 30 and 50 IU/dL) and from healthy controls. Human umbilical vein endothelial cells were used as an additional control cell line. Cells were characterized for their Weibel Palade body (WPB) content and VWF release. scRNA-seq of all cell lines was performed to evaluate for gene expression heterogeneity and for candidate modifiers of VWF regulation. Candidate modifiers identified by scRNA-seq were further characterized with small-interfering RNA (siRNA) experiments to evaluate for effects on VWF. We observed that ECFCs derived from patients with low VWF demonstrated alterations in baseline WPB metrics and exhibit impaired VWF release. scRNA-seq analyses of these endothelial cells revealed overall decreased VWF transcription, mosaicism of VWF expression, and genes that are differentially expressed in low VWF ECFCs and control endothelial cells (control ECs). An siRNA screen of potential VWF modifiers provided further evidence of regulatory candidates, and 1 such candidate, FLI1, alters the transcriptional activity of VWF. In conclusion, ECFCs from individuals with low VWF demonstrate alterations in their baseline VWF packaging and release compared with control ECs. scRNA-seq revealed alterations in VWF transcription, and siRNA screening identified multiple candidate regulators of VWF.


Subject(s)
von Willebrand Diseases , von Willebrand Factor , Human Umbilical Vein Endothelial Cells/metabolism , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Single-Cell Analysis , Weibel-Palade Bodies/metabolism , von Willebrand Diseases/metabolism , von Willebrand Factor/metabolism
5.
Blood ; 137(23): 3277-3283, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33556167

ABSTRACT

Approximately 35% of patients with type 1 von Willebrand disease (VWD) do not have a known pathogenic variant in the von Willebrand factor (VWF) gene. We aimed to understand the impact of VWF coding variants on VWD risk and VWF antigen (VWF:Ag) levels, studying 527 patients with low VWF and VWD and 210 healthy controls. VWF sequencing was performed and VWF:Ag levels assayed. A combined annotation-dependent depletion (CADD) score >20 was used as a predicted pathogenicity measure. The number of rare nonsynonymous VWF variants significantly predicted VWF:Ag levels (P = 1.62 × 10-21). There was an association between average number of rare nonsynonymous VWF variants with VWD type 1 (P = 2.4 × 10-13) and low VWF (P = 1.6 × 10-27) compared with healthy subjects: type 1 subjects possessed on average >2 times as many rare variants as those with low VWF and 8 times as many as healthy subjects. The number of rare nonsynonymous variants significantly predicts VWF:Ag levels even after controlling for presence of a variant with a CADD score >20 or a known pathogenic variant in VWF (P = 2.7 × 10-14). The number of rare nonsynonymous variants in VWF as well as the presence of a variant with CADD >20 are both significantly associated with VWF levels. The association with rare nonsynonymous variants holds even when controlling for known pathogenic variants, suggesting that additional variants, in VWF or elsewhere, are associated with VWF:Ag levels. Patients with higher VWF:Ag levels with fewer rare nonsynonymous VWF gene variants could benefit from next-generation sequencing to find the cause of their bleeding.


Subject(s)
Genetic Variation , Hemorrhage , von Willebrand Disease, Type 1 , von Willebrand Factor , Female , Hemorrhage/genetics , Hemorrhage/metabolism , Humans , Male , von Willebrand Disease, Type 1/genetics , von Willebrand Disease, Type 1/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
6.
Platelets ; 34(1): 2186707, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36894508

ABSTRACT

Multi-omics approaches are being used increasingly to study physiological and pathophysiologic processes. Proteomics specifically focuses on the study of proteins as functional elements and key contributors to, and markers of the phenotype, as well as targets for diagnostic and therapeutic approaches. Depending on the condition, the plasma proteome can mirror the platelet proteome, and hence play an important role in elucidating both physiologic and pathologic processes. In fact, both plasma and platelet protein signatures have been shown to be important in the setting of thrombosis-prone disease states such as atherosclerosis and cancer. Plasma and platelet proteomes are increasingly being studied as a part of a single entity, as is the case with patient-centric sample collection approaches such as capillary blood. Future studies should cut across the plasma and platelet proteome silos, taking advantage of the vast knowledge available when they are considered as part of the same studies, rather than studied as distinct entities.


Platelets are key cellular elements of blood with plasma constituting the liquid component. Both platelets and proteins found in plasma rapidly work in unity to prevent/limit blood loss in response to blood vessel damage. Proteomics is the analysis of the entire protein complement of a cell, tissue, or organism under a specific, defined set of conditions. Of note, research to date has shown that platelet and plasma proteomes share many common proteins. In some disease scenarios, plasma proteomes can be used to identify platelet function or dysfunction, while in other scenarios, platelet-specific proteins are needed for physiological assessment. Thus, it may be beneficial to simultaneously study the plasma and platelet proteomes, thereby exploiting the considerable wealth of information provided under such circumstances.


Subject(s)
Blood Platelets , Proteome , Blood Platelets/metabolism , Proteome/metabolism , Phenotype , Plasma/metabolism , Proteomics
7.
Proc Natl Acad Sci U S A ; 117(39): 24316-24325, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32929010

ABSTRACT

Platelets are best known for their vasoprotective responses to injury and inflammation. Here, we have asked whether they also support vascular integrity when neither injury nor inflammation is present. Changes in vascular barrier function in dermal and meningeal vessels were measured in real time in mouse models using the differential extravasation of fluorescent tracers as a biomarker. Severe thrombocytopenia produced by two distinct methods caused increased extravasation of 40-kDa dextran from capillaries and postcapillary venules but had no effect on extravasation of 70-kDa dextran or albumin. This reduction in barrier function required more than 4 h to emerge after thrombocytopenia was established, reverting to normal as the platelet count recovered. Barrier dysfunction was also observed in mice that lacked platelet-dense granules, dense granule secretion machinery, glycoprotein (GP) VI, or the GPVI signaling effector phospholipase C (PLC) γ2. It did not occur in mice lacking α-granules, C type lectin receptor-2 (CLEC-2), or protease activated receptor 4 (PAR4). Notably, although both meningeal and dermal vessels were affected, intracerebral vessels, which are known for their tighter junctions between endothelial cells, were not. Collectively, these observations 1) highlight a role for platelets in maintaining vascular homeostasis in the absence of injury or inflammation, 2) provide a sensitive biomarker for detecting changes in platelet-dependent barrier function, 3) identify which platelet processes are required, and 4) suggest that the absence of competent platelets causes changes in the vessel wall itself, accounting for the time required for dysfunction to emerge.


Subject(s)
Blood Platelets/immunology , Blood Vessels/immunology , Hemostasis , Homeostasis , Animals , Blood Vessels/injuries , Blood Vessels/physiopathology , Female , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Male , Meninges/blood supply , Meninges/immunology , Mice , Phospholipase C gamma/genetics , Phospholipase C gamma/immunology , Skin/blood supply , Skin/immunology
8.
Metab Eng ; 69: 313-322, 2022 01.
Article in English | MEDLINE | ID: mdl-34954086

ABSTRACT

Platelet metabolism is linked to platelet hyper- and hypoactivity in numerous human diseases. Developing a detailed understanding of the link between metabolic shifts and platelet activation state is integral to improving human health. Here, we show the first application of isotopically nonstationary 13C metabolic flux analysis to quantitatively measure carbon fluxes in both resting and thrombin activated platelets. Metabolic flux analysis results show that resting platelets primarily metabolize glucose to lactate via glycolysis, while acetate is oxidized to fuel the tricarboxylic acid cycle. Upon activation with thrombin, a potent platelet agonist, platelets increase their uptake of glucose 3-fold. This results in an absolute increase in flux throughout central metabolism, but when compared to resting platelets they redistribute carbon dramatically. Activated platelets decrease relative flux to the oxidative pentose phosphate pathway and TCA cycle from glucose and increase relative flux to lactate. These results provide the first report of reaction-level carbon fluxes in platelets and allow us to distinguish metabolic fluxes with much higher resolution than previous studies.


Subject(s)
Blood Platelets , Metabolic Flux Analysis , Blood Platelets/metabolism , Carbon/metabolism , Glycolysis , Humans , Metabolic Flux Analysis/methods , Pentose Phosphate Pathway
9.
Platelets ; 33(8): 1119-1131, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-35659185

ABSTRACT

Apolipoprotein A-I (ApoA-I) is elevated in the plasma of a subgroup of trauma patients with systemic hyperfibrinolysis. We hypothesize that apoA-I inhibits platelet activation and clot formation. The effects of apoA-I on human platelet activation and clot formation were assessed by whole blood thrombelastography (TEG), platelet aggregometry, P-selectin surface expression, microfluidic adhesion, and Akt phosphorylation. Mouse models of carotid artery thrombosis and pulmonary embolism were used to assess the effects of apoA-I in vivo. The ApoA-1 receptor was investigated with transgenic mice knockouts (KO) for the scavenger receptor class B member 1 (SR-BI). Compared to controls, exogenous human apoA-I inhibited arachidonic acid and collagen-mediated human and mouse platelet aggregation, decreased P-selectin surface expression and Akt activation, resulting in diminished clot strength and increased clot lysis by TEG. ApoA-I also decreased platelet aggregate size formed on a collagen surface under flow. In vivo, apoA-I delayed vessel occlusion in an arterial thrombosis model and conferred a survival advantage in a pulmonary embolism model. SR-BI KO mice significantly reduced apoA-I inhibition of platelet aggregation versus wild-type platelets. Exogenous human apoA-I inhibits platelet activation, decreases clot strength and stability, and protects mice from arterial and venous thrombosis via the SR-BI receptor.


Subject(s)
Pulmonary Embolism , Thrombosis , Animals , Apolipoprotein A-I/metabolism , Apolipoprotein A-I/pharmacology , Arachidonic Acid/pharmacology , Blood Platelets/metabolism , CD36 Antigens/metabolism , Humans , Mice , P-Selectin/metabolism , Platelet Activation , Platelet Aggregation , Proto-Oncogene Proteins c-akt/metabolism
10.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L413-L421, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33264579

ABSTRACT

Inflammation is central to the pathogenesis of pulmonary vascular remodeling and pulmonary hypertension (PH). Inflammation precedes remodeling in preclinical models, thus supporting the concept that changes in immunity drive remodeling in PH. Platelets are recognized as mediators of inflammation, but whether platelets contribute to hypoxia-driven inflammation has not been studied. We utilized a murine hypoxia model to test the hypothesis that platelets drive hypoxia-induced inflammation. We evaluated male and female 9-wk-old normoxic and hypoxic mice and in selected experiments included hypoxic thrombocytopenic mice. Thrombocytopenic mice were generated with an anti-GP1bα rat IgG antibody. We also performed immunostaining of lung sections from failed donor controls and patients with idiopathic pulmonary arterial hypertension. We found that platelets are increased in the lungs of hypoxic mice and hypoxia induces platelet activation. Platelet depletion prevents hypoxia-driven increases in the proinflammatory chemokines CXCL4 and CCL5 and attenuates hypoxia-induced increase in plasma CSF-2. Pulmonary interstitial macrophages are increased in the lungs of hypoxic mice; this increase is prevented in thrombocytopenic mice. To determine the potential relevance to human disease, lung sections from donors and patients with advanced idiopathic pulmonary arterial hypertension (iPAH) were immunostained for the platelet-specific protein CD41. We observed iPAH lungs had a two-fold increase in CD41, compared with controls. Our data provide evidence that the platelet count is increased in the lungs and activated in mice with hypoxia-induced inflammation and provides rationale for the further study of the potential contribution of platelets to inflammatory mediated vascular remodeling and PH.


Subject(s)
Blood Platelets/immunology , Hypoxia/immunology , Lung/immunology , Platelet Activation/immunology , Pneumonia/immunology , Animals , Blood Platelets/pathology , Chemokine CCL5/immunology , Disease Models, Animal , Female , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Hypoxia/pathology , Inflammation/immunology , Inflammation/pathology , Lung/pathology , Male , Mice , Platelet Factor 4/immunology , Pneumonia/pathology , Thrombocytopenia/chemically induced , Thrombocytopenia/immunology , Thrombocytopenia/pathology
11.
Blood ; 134(8): 663-667, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31248877

ABSTRACT

Germ line mutations in ETV6 are responsible for a familial thrombocytopenia and leukemia predisposition syndrome. Thrombocytopenia is almost completely penetrant and is usually mild. Leukemia is reported in ∼30% of carriers and is most often B-cell acute lymphoblastic leukemia. The mechanisms by which ETV6 dysfunction promotes thrombocytopenia and leukemia remain unclear. Care for individuals with ETV6-related thrombocytopenia and leukemia predisposition includes genetic counseling, treatment or prevention of excessive bleeding and surveillance for the development of hematologic malignancy.


Subject(s)
Germ-Line Mutation , Leukemia/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Thrombocytopenia/genetics , Bone Marrow/metabolism , Bone Marrow/pathology , Disease Management , Genetic Predisposition to Disease , Hemorrhage/etiology , Hemorrhage/prevention & control , Humans , Leukemia/complications , Leukemia/pathology , Leukemia/therapy , Proto-Oncogene Proteins c-ets/analysis , Repressor Proteins/analysis , Thrombocytopenia/complications , Thrombocytopenia/pathology , Thrombocytopenia/therapy , ETS Translocation Variant 6 Protein
12.
Blood ; 133(14): 1585-1596, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30770394

ABSTRACT

Glycan determinants on von Willebrand factor (VWF) play critical roles in regulating its susceptibility to proteolysis and clearance. Abnormal glycosylation has been shown to cause von Willebrand disease (VWD) in a number of different mouse models. However, because of the significant technical challenges associated with accurate assessment of VWF glycan composition, the importance of carbohydrates in human VWD pathogenesis remains largely unexplored. To address this, we developed a novel lectin-binding panel to enable human VWF glycan characterization. This methodology was then used to study glycan expression in a cohort of 110 patients with low VWF compared with O blood group-matched healthy controls. Interestingly, significant interindividual heterogeneity in VWF glycan expression was seen in the healthy control population. This variation included terminal sialylation and ABO(H) blood group expression on VWF. Importantly, we also observed evidence of aberrant glycosylation in a subgroup of patients with low VWF. In particular, terminal α(2-6)-linked sialylation was reduced in patients with low VWF, with a secondary increase in galactose (Gal) exposure. Furthermore, an inverse correlation between Gal exposure and estimated VWF half-life was observed in those patients with enhanced VWF clearance. Together, these findings support the hypothesis that loss of terminal sialylation contributes to the pathophysiology underpinning low VWF in at least a subgroup of patients by promoting enhanced clearance. In addition, alterations in VWF carbohydrate expression are likely to contribute to quantitative and qualitative variations in VWF levels in the normal population. This trial was registered at www.clinicaltrials.gov as #NCT03167320.


Subject(s)
Galactose/metabolism , Galactose/pharmacokinetics , von Willebrand Factor/metabolism , ABO Blood-Group System/chemistry , Case-Control Studies , Glycosylation , Humans , Metabolic Clearance Rate , N-Acetylneuraminic Acid/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , von Willebrand Factor/chemistry
13.
Blood ; 134(9): 727-740, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31311815

ABSTRACT

Aging and chronic inflammation are independent risk factors for the development of atherothrombosis and cardiovascular disease. We hypothesized that aging-associated inflammation promotes the development of platelet hyperreactivity and increases thrombotic risk during aging. Functional platelet studies in aged-frail adults and old mice demonstrated that their platelets are hyperreactive and form larger thrombi. We identified tumor necrosis factor α (TNF-α) as the key aging-associated proinflammatory cytokine responsible for platelet hyperreactivity. We further showed that platelet hyperreactivity is neutralized by abrogating signaling through TNF-α receptors in vivo in a mouse model of aging. Analysis of the bone marrow compartments showed significant platelet-biased hematopoiesis in old mice reflected by increased megakaryocyte-committed progenitor cells, megakaryocyte ploidy status, and thrombocytosis. Single-cell RNA-sequencing analysis of native mouse megakaryocytes showed significant reprogramming of inflammatory, metabolic, and mitochondrial gene pathways in old mice that appeared to play a significant role in determining platelet hyperreactivity. Platelets from old mice (where TNF-α was endogenously increased) and from young mice exposed to exogenous TNF-α exhibited significant mitochondrial changes characterized by elevated mitochondrial mass and increased oxygen consumption during activation. These mitochondrial changes were mitigated upon TNF-α blockade. Similar increases in platelet mitochondrial mass were seen in platelets from patients with myeloproliferative neoplasms, where TNF-α levels are also increased. Furthermore, metabolomics studies of platelets from young and old mice demonstrated age-dependent metabolic profiles that may differentially poise platelets for activation. Altogether, we present previously unrecognized evidence that TNF-α critically regulates megakaryocytes resident in the bone marrow niche and aging-associated platelet hyperreactivity and thrombosis.


Subject(s)
Aging , Blood Platelets/immunology , Inflammation/immunology , Mitochondria/immunology , Thrombosis/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Blood Platelets/pathology , Inflammation/pathology , Megakaryocytes/immunology , Megakaryocytes/pathology , Mice , Mice, Inbred C57BL , Mitochondria/pathology , Platelet Activation , Thrombosis/pathology
14.
Platelets ; 32(1): 141-143, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-32406789

ABSTRACT

We and others recently described families with germline heterozygote mutations in ETV6 leading to autosomal dominant highly penetrant thrombocytopenia, red cell macrocytosis and predisposition to leukemia.The bone marrow of affected individuals shows erythroid dysplasia and hyperplasia of small, hypolobulated immature megakaryocytes suggesting a differentiation arrest. This discovery led to subsequent studies that confirmed our findings and to additional larger studies that demonstrated a 1% frequency of germline ETV6 mutations among 4405 individuals with acute lymphoblastic leukemia. Additionally, a 4.5% prevalence of ETV6 germline mutations was reported in families with inherited thrombocytopenia. Preliminary data suggest that decreased ETV6 function leads to MK maturation arrest, impaired platelet production and differentially expressed platelet transcripts among individuals affected with ETV6 mutations when compared to control relatives. Additionally, individuals with some ETV6 mutation exhibit bleeding that appears disproportionate to the mildly reduced platelet count, suggesting a platelet function deficit. Furthermore, recent studies describe decreased ability of platelets from individuals with ETV6 mutations to spread on fibrinogen covered surfaces. Overall, ETV6 germline mutations represent a new cancer predisposition thrombocytopenia with platelet dysfunction.


Subject(s)
Blood Platelet Disorders/genetics , Thrombocytopenia/genetics , Humans
15.
Nucleic Acids Res ; 47(4): e20, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30496484

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) methods generate sparse gene expression profiles for thousands of single cells in a single experiment. The information in these profiles is sufficient to classify cell types by distinct expression patterns but the high complexity of scRNA-seq libraries often prevents full characterization of transcriptomes from individual cells. To extract more focused gene expression information from scRNA-seq libraries, we developed a strategy to physically recover the DNA molecules comprising transcriptome subsets, enabling deeper interrogation of the isolated molecules by another round of DNA sequencing. We applied the method in cell-centric and gene-centric modes to isolate cDNA fragments from scRNA-seq libraries. First, we resampled the transcriptomes of rare, single megakaryocytes from a complex mixture of lymphocytes and analyzed them in a second round of DNA sequencing, yielding up to 20-fold greater sequencing depth per cell and increasing the number of genes detected per cell from a median of 1313 to 2002. We similarly isolated mRNAs from targeted T cells to improve the reconstruction of their VDJ-rearranged immune receptor mRNAs. Second, we isolated CD3D mRNA fragments expressed across cells in a scRNA-seq library prepared from a clonal T cell line, increasing the number of cells with detected CD3D expression from 59.7% to 100%. Transcriptome resampling is a general approach to recover targeted gene expression information from single-cell RNA sequencing libraries that enhances the utility of these costly experiments, and may be applicable to the targeted recovery of molecules from other single-cell assays.


Subject(s)
RNA, Messenger/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis , Transcriptome/genetics , Animals , Cluster Analysis , DNA, Complementary/genetics , Gene Expression Profiling/methods , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Leukocytes, Mononuclear/metabolism , Mice , Software
16.
Nanomedicine ; 35: 102405, 2021 07.
Article in English | MEDLINE | ID: mdl-33932591

ABSTRACT

Platelet accumulation by VWF under high shear rates at the site of atherosclerotic plaque rupture leads to myocardial infarction and stroke. Current anti-platelet therapies remain ineffective for a large percentage of the population, while presenting significant risks for bleeding. We explore a novel way to inhibit arterial thrombus formation. Theoretically, a negative charge may influence the tertiary structure of VWF to favor the globular configuration by biophysical means without the use of platelet inactivating drugs. We tested this hypothesis experimentally for charged nanoparticles (CNPs) to inhibit thrombus formation in a microfluidic thrombosis assay (MTA). Several different CNPs demonstrated the ability to retard thrombotic occlusion in the MTA. A preliminary study in mice shows that thrombus stability is weaker with CNP administration and bleeding times are not markedly prolonged. The CNPs tested here show promise as a new class of antithrombotic therapies that act by biophysical means rather than biochemical pathways.


Subject(s)
Blood Platelets/metabolism , Fibrinolytic Agents , Microfluidic Analytical Techniques , Nanoparticles , Platelet Adhesiveness/drug effects , Platelet Aggregation/drug effects , Thrombosis , Animals , Bleeding Time , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/therapeutic use , Humans , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Thrombosis/drug therapy , Thrombosis/metabolism
17.
Haematologica ; 105(4): 888-894, 2020 04.
Article in English | MEDLINE | ID: mdl-32139434

ABSTRACT

Glanzmann thrombasthenia (GT) is an autosomal recessive disorder of platelet aggregation caused by quantitative or qualitative defects in integrins αIIb and ß3. These integrins are encoded by the ITGA2B and ITGB3 genes and form platelet glycoprotein (GP)IIb/IIIa, which acts as the principal platelet receptor for fibrinogen. Although there is variability in the clinical phenotype, most patients present with severe mucocutaneous bleeding at an early age. A classic pattern of abnormal platelet aggregation, platelet glycoprotein expression and molecular studies confirm the diagnosis. Management of bleeding is based on a combination of hemostatic agents including recombinant activated factor VII with or without platelet transfusions and antifibrinolytic agents. Refractory bleeding and platelet alloimmunization are common complications. In addition, pregnant patients pose unique management challenges. This review highlights clinical and molecular aspects in the approach to patients with GT, with particular emphasis on the significance of multidisciplinary care.


Subject(s)
Thrombasthenia , Blood Platelets , Humans , Integrin beta3/genetics , Platelet Aggregation , Platelet Function Tests , Platelet Glycoprotein GPIIb-IIIa Complex , Thrombasthenia/diagnosis , Thrombasthenia/genetics , Thrombasthenia/therapy
18.
Haematologica ; 105(3): 585-597, 2020 03.
Article in English | MEDLINE | ID: mdl-31101752

ABSTRACT

Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic inflammation and progressive destruction of joint tissue. It is also characterized by aberrant blood phenotypes including anemia and suppressed lymphopoiesis that contribute to morbidity in RA patients. However, the impact of RA on hematopoietic stem cells (HSC) has not been fully elucidated. Using a collagen-induced mouse model of human RA, we identified systemic inflammation and myeloid overproduction associated with activation of a myeloid differentiation gene program in HSC. Surprisingly, despite ongoing inflammation, HSC from arthritic mice remain in a quiescent state associated with activation of a proliferation arrest gene program. Strikingly, we found that inflammatory cytokine blockade using the interleukin-1 receptor antagonist anakinra led to an attenuation of inflammatory arthritis and myeloid expansion in the bone marrow of arthritic mice. In addition, anakinra reduced expression of inflammation-driven myeloid lineage and proliferation arrest gene programs in HSC of arthritic mice. Altogether, our findings show that inflammatory cytokine blockade can contribute to normalization of hematopoiesis in the context of chronic autoimmune arthritis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Autoimmune Diseases , Animals , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Cytokines , Disease Models, Animal , Humans , Mice
19.
FASEB J ; 33(11): 12477-12486, 2019 11.
Article in English | MEDLINE | ID: mdl-31450979

ABSTRACT

Classic homocystinuria (HCU) is an inherited disorder characterized by elevated homocysteine (Hcy) in plasma and tissues resulting from cystathionine ß-synthase (CBS) deficiency. There is no cure, and patients are predominantly managed by methionine-restricted diet (MRD) to limit the production of Hcy. In this study, we used the I278T mouse model of HCU to evaluate the long-term impact of a novel enzyme replacement therapy [truncated human CBS C15S mutant modified with linear 20-kDa N-hydroxysuccinimide ester polyethylene glycol (OT-58)] on clinical end points relevant to human patients with HCU. In addition, we compared its efficacy on a background of either MRD or normal methionine intake [regular diet (REG)] to that of MRD alone. We found that, compared with untreated I278T mice, OT-58 treatment of I278T mice fed with the REG diet resulted in a 90% decrease in plasma Hcy concentrations and correction of learning/cognition, endothelial dysfunction, hemostasis, bone mineralization, and body composition. On background of the MRD, OT-58 performed equally well with plasma Hcy entirely normalized. The MRD alone decreased plasma Hcy by 67% and corrected the HCU phenotype in I278T mice. However, the MRD increased anxiety and reduced bone mineral content in both I278T mice and wild-type controls. This study shows that OT-58 is a highly efficacious novel treatment for HCU on the background of either normal or restricted methionine intake.-Majtan, T., Park, I., Cox, A., Branchford, B. R., di Paola, J., Bublil, E. M., Kraus, J. P. Behavior, body composition, and vascular phenotype of homocystinuric mice on methionine-restricted diet or enzyme replacement therapy.


Subject(s)
Behavior, Animal , Body Composition , Cystathionine beta-Synthase/therapeutic use , Enzyme Replacement Therapy , Homocystinuria/drug therapy , Animals , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Disease Models, Animal , Homocystinuria/genetics , Homocystinuria/metabolism , Homocystinuria/pathology , Humans , Methionine/pharmacology , Mice , Mice, Transgenic
20.
Arterioscler Thromb Vasc Biol ; 39(9): 1831-1842, 2019 09.
Article in English | MEDLINE | ID: mdl-31291760

ABSTRACT

Objective- Acquired von Willebrand syndrome is defined by excessive cleavage of the VWF (von Willebrand Factor) and is associated with impaired primary hemostasis and severe bleeding. It often develops when blood is exposed to nonphysiological flow such as in aortic stenosis or mechanical circulatory support. We evaluated the role of laminar, transitional, and turbulent flow on VWF cleavage and the effects on VWF function. Approach and Results- We used a vane rheometer to generate laminar, transitional, and turbulent flow and evaluate the effect of each on VWF cleavage in the presence of ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type-1 motif, member 13). We performed functional assays to evaluate the effect of these flows on VWF structure and function. Computational fluid dynamics was used to estimate the flow fields and forces within the vane rheometer under each flow condition. Turbulent flow is required for excessive cleavage of VWF in an ADAMTS13-dependent manner. The assay was repeated with whole blood, and the turbulent flow had the same effect. Our computational fluid dynamics results show that under turbulent conditions, the Kolmogorov scale approaches the size of VWF. Finally, cleavage of VWF in this study has functional consequences under flow as the resulting VWF has decreased ability to bind platelets and collagen. Conclusions- Turbulent flow mediates VWF cleavage in the presence of ADAMTS13, decreasing the ability of VWF to sustain platelet adhesion. These findings impact the design of mechanical circulatory support devices and are relevant to pathological environments where turbulence is added to circulation.


Subject(s)
ADAMTS13 Protein/physiology , von Willebrand Factor/chemistry , Adult , Collagen/chemistry , Humans , Hydrodynamics , Male , Middle Aged , Platelet Adhesiveness , Shear Strength , von Willebrand Factor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL