Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nature ; 623(7986): 324-328, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938708

ABSTRACT

The physicochemical properties of molecular crystals, such as solubility, stability, compactability, melting behaviour and bioavailability, depend on their crystal form1. In silico crystal form selection has recently come much closer to realization because of the development of accurate and affordable free-energy calculations2-4. Here we redefine the state of the art, primarily by improving the accuracy of free-energy calculations, constructing a reliable experimental benchmark for solid-solid free-energy differences, quantifying statistical errors for the computed free energies and placing both hydrate crystal structures of different stoichiometries and anhydrate crystal structures on the same energy landscape, with defined error bars, as a function of temperature and relative humidity. The calculated free energies have standard errors of 1-2 kJ mol-1 for industrially relevant compounds, and the method to place crystal structures with different hydrate stoichiometries on the same energy landscape can be extended to other multi-component systems, including solvates. These contributions reduce the gap between the needs of the experimentalist and the capabilities of modern computational tools, transforming crystal structure prediction into a more reliable and actionable procedure that can be used in combination with experimental evidence to direct crystal form selection and establish control5.

2.
Bioorg Med Chem Lett ; 59: 128576, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35065235

ABSTRACT

Structure-based design was utilized to optimize 6,6-diaryl substituted dihydropyrone and hydroxylactam to obtain inhibitors of lactate dehydrogenase (LDH) with low nanomolar biochemical and single-digit micromolar cellular potencies. Surprisingly the replacement of a phenyl with a pyridyl moiety in the chemical structure revealed a new binding mode for the inhibitors with subtle conformational change of the LDHA active site. This led to the identification of a potent, cell-active hydroxylactam inhibitor exhibiting an in vivo pharmacokinetic profile suitable for mouse tumor xenograft study.


Subject(s)
Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Lactams/pharmacology , Animals , Cell Line , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , L-Lactate Dehydrogenase/metabolism , Lactams/chemistry , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship
3.
Org Biomol Chem ; 17(43): 9510-9513, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31657418

ABSTRACT

Nucleophilic addition of Grignard reagents to tetrahydro-ß-carboline (THC) N-sulfonyl N,S-acetal generates exclusively cis-1,3-disubstituted THCs with a unique 1,3-diaxial conformation. The stereochemical relationship of the 1,3-substituents was confirmed by 2-dimensional NMR spectroscopy and X-ray crystallography. The mechanism of the reaction is proposed based on crystal structures and molecular orbital calculations.

4.
Mol Pharm ; 15(11): 5072-5080, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30216726

ABSTRACT

GENE-A, a Nav1.7 inhibitor compound with analgesic activity, was developed as a crystalline anhydrate, for which two polymorphic forms, I and II, were discovered. The two forms were found to possess very similar free energies as determined experimentally with Form II being thermodynamically stable above 25 °C based on solubility measurements. A detailed solid-state characterization was conducted to determine the relative stability of these solid forms, and both thermodynamic and kinetic pathways (slurry bridging and crystallization) were evaluated. Form II was obtained as the final form in competitive slurries at RT. The outcome of crystallization experiments in terms of the solid form obtained was complicated and yielded variable results depending on the form of the starting material and that of the seeds. Form II was reproducibly obtained as the end product in unseeded experiments and in those with Form II as seeds and starting material, while Form I was obtained in all other seeded experiments. On the basis of the experimental data, a controlled crystallization strategy was developed, wherein Form II was used both as starting material and seeds to reproducibly obtain the desired form upon scale-up.


Subject(s)
Analgesics, Non-Narcotic/chemistry , Drug Compounding/methods , Voltage-Gated Sodium Channel Blockers/chemistry , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Crystallization/methods , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Phase Transition , Solubility , Transition Temperature
5.
Tetrahedron ; 73(16): 2234-2241, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28814819

ABSTRACT

Six cytotoxic and antimicrobial metabolites of a new bromo-phenazinone class, the marinocyanins A-F (1-6), were isolated together with the known bacterial metabolites 2-bromo-1-hydroxyphenazine (7), lavanducyanin (8, WS-9659A) and its chlorinated analog WS-9659B (9). These metabolites were purified by bioassay-guided fractionation of the extracts of our MAR4 marine actinomycete strains CNS-284 and CNY-960. The structures of the new compounds were determined by detailed spectroscopic methods and marinocyanin A (1) was confirmed by crystallographic methods. The marinocyanins represent the first bromo-phenazinones with an N-isoprenoid substituent in the skeleton. Marinocyanins A-F show strong to weak cytotoxicity against HCT-116 human colon carcinoma and possess modest antimicrobial activities against Staphylococcus aureus and amphotericin-resistant Candida albicans.

6.
J Am Chem Soc ; 138(2): 587-93, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26744765

ABSTRACT

A recent trend in homogeneous gold catalysis has been the development of oxidative transformations relying on Au(I)/Au(III) redox cycling. Typically, phosphine-supported Au(I) precatalysts are used in the presence of strong oxidants to presumably generate phosphine Au(III) intermediates. Herein, we disclose that such Au(III) complexes can undergo facile C(aryl)-P reductive elimination to afford phosphonium salts, which have been spectroscopically and crystallographically characterized. Mechanistic studies indicate that this process occurs from cationic species at temperatures as low as -20 °C but can be accelerated in the presence of nucleophiles, such as acetonitrile and phosphines, via a five-coordinate intermediate. Importantly, this study highlights that irreversible C(aryl)-P reductive elimination is a feasible decomposition or activation pathway for phosphine-supported Au(III) catalysts and should not be ignored in future reaction development.


Subject(s)
Carbon/chemistry , Gold/chemistry , Phosphorus/chemistry , Oxidation-Reduction
7.
J Am Chem Soc ; 138(34): 10830-3, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27525345

ABSTRACT

The denudatine-type diterpenoid alkaloids cochlearenine, N-ethyl-1α-hydroxy-17-veratroyldictyzine, and paniculamine have been synthesized for the first time (25, 26, and 26 steps from 16, respectively). These syntheses take advantage of a common intermediate (8) that we have previously employed in preparing aconitine-type natural products. The syntheses reported herein complete the realization of a unified strategy for the preparation of C20, C19, and C18 diterpenoid alkaloids.


Subject(s)
Alkaloids/chemistry , Alkaloids/chemical synthesis , Diterpenes/chemistry , Chemistry Techniques, Synthetic , Cyclization
8.
J Nat Prod ; 77(1): 15-21, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24328269

ABSTRACT

The microbial production, isolation, and structure elucidation of four new napyradiomycin congeners (1-4) is reported. The structures of these compounds, which are new additions to the marine-derived meroterpenoids, were defined by comprehensive spectroscopic analysis and by X-ray crystallography. Using fluorescence-activated cell sorting (FACS) analysis, napyradiomycins 1-4 were observed to induce apoptosis in the colon adenocarcinoma cell line HCT-116, indicating the possibility of a specific biochemical target for this class of cytotoxins.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Naphthoquinones/isolation & purification , Naphthoquinones/pharmacology , Antineoplastic Agents/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Marine Biology , Molecular Conformation , Molecular Structure , Naphthoquinones/chemistry , Nuclear Magnetic Resonance, Biomolecular , Stereoisomerism
9.
J Med Chem ; 67(11): 8585-8608, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38809766

ABSTRACT

The von Hippel-Lindau (VHL) protein plays a pivotal role in regulating the hypoxic stress response and has been extensively studied and utilized in the targeted protein degradation field, particularly in the context of bivalent degraders. In this study, we present a comprehensive peptidomimetic structure-activity relationship (SAR) approach, combined with cellular NanoBRET target engagement assays to enhance the existing VHL ligands. Through systematic modifications of the molecule, we identified the 1,2,3-triazole group as an optimal substitute of the left-hand side amide bond that yields 10-fold higher binding activity. Moreover, incorporating conformationally constrained alterations on the methylthiazole benzylamine moiety led to the development of highly potent VHL ligands with picomolar binding affinity and significantly improved oral bioavailability. We anticipate that our optimized VHL ligand, GNE7599, will serve as a valuable tool compound for investigating the VHL pathway and advancing the field of targeted protein degradation.


Subject(s)
Biological Availability , Peptidomimetics , Von Hippel-Lindau Tumor Suppressor Protein , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/chemistry , Peptidomimetics/chemistry , Peptidomimetics/pharmacokinetics , Peptidomimetics/pharmacology , Humans , Ligands , Structure-Activity Relationship , Administration, Oral , Animals
10.
J Am Chem Soc ; 135(50): 18802-5, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24283463

ABSTRACT

The synthesis of a novel supramolecular tetrahedral assembly of K12Ga4L6 stoichiometry is reported. The newly designed chiral ligand exhibits high diastereoselective control during cluster formation, leading exclusively to a single diastereomer of the desired host. This new assembly also exhibits high stability toward oxidation or a low pH environment and is a more robust and efficient catalyst for asymmetric organic transformations of neutral substrates.


Subject(s)
Amides/chemistry , Catalysis , Crystallography, X-Ray , Hydrogen-Ion Concentration , Molecular Structure , Stereoisomerism , Substrate Specificity
11.
J Phys Chem A ; 116(50): 12249-59, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23176252

ABSTRACT

Separated concerted proton-electron transfer (sCPET) reactions of two series of phenols with pendent substituted pyridyl moieties are described. The pyridine is either attached directly to the phenol (HOAr-pyX) or connected through a methylene linker (HOArCH(2)pyX) (X = 4-NO(2), 5-CF(3), 4-CH(3), and 4-NMe(2)). Electron-donating and -withdrawing substituents have a substantial effect on the chemical environment of the transferring proton, as indicated by IR and (1)H NMR spectra, X-ray structures, and computational studies. One-electron oxidation of the phenols occurs concomitantly with proton transfer from the phenolic oxygen to the pyridyl nitrogen. The oxidation potentials vary linearly with the pK(a) of the free pyridine (pyX), with slopes slightly below the Nerstian value of 59 mV/pK(a). For the HOArCH(2)pyX series, the rate constants k(sCPET) for oxidation by NAr(3)(•+) or [Fe(diimine)(3)](3+) vary primarily with the thermodynamic driving force (ΔG°(sCPET)), whether ΔG° is changed by varying the potential of the oxidant or the substituent on the pyridine, indicating a constant intrinsic barrier λ. In contrast, the substituents in the HOAr-pyX series affect λ as well as ΔG°(sCPET), and compounds with electron-withdrawing substituents have significantly lower reactivity. The relationship between the structural and spectroscopic properties of the phenols and their CPET reactivity is discussed.


Subject(s)
Phenol/chemistry , Protons , Pyridines/chemistry , Electron Transport , Hydrogen Bonding , Models, Molecular , Molecular Conformation
12.
J Pharm Biomed Anal ; 213: 114627, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35276506

ABSTRACT

While developing a synthetic route for GDC-0326, a PI3Kα selective inhibitor, a side product was identified which was adversely impacting process chemistry development. To aid in optimization of a viable synthetic pathway for the drug, it was decided to characterize this impurity. Initial efforts using typical high-resolution mass spectrometry data coupled with NMR analysis were unable to unambiguously identify the structure. The NMR analysis was hampered by a severe lack of protons in the core of the structure. While efforts were being made to produce suitable crystals for definitive x-ray analysis, Raman analysis was undertaken. The vibrational data were compared to DFT calculations for the two most likely structures. This data, along with chemical reasoning, eventually led to successful prediction of structure 2, which was ultimately confirmed by single crystal x-ray diffractometry data.


Subject(s)
Benzoxepins , Drug Contamination , Imidazoles , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry
13.
J Org Chem ; 76(13): 5170-6, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21627171

ABSTRACT

The rotation barriers for 10 different methyl groups in five methyl-substituted phenanthrenes and three methyl-substituted naphthalenes were determined by ab initio electronic structure calculations, both for the isolated molecules and for the central molecules in clusters containing 8-13 molecules. These clusters were constructed computationally using the carbon positions obtained from the crystal structures of the eight compounds and the hydrogen positions obtained from electronic structure calculations. The calculated methyl rotation barriers in the clusters (E(clust)) range from 0.6 to 3.4 kcal/mol. Solid-state (1)H NMR spin-lattice relaxation rate measurements on the polycrystalline solids gave experimental activation energies (E(NMR)) for methyl rotation in the range from 0.4 to 3.2 kcal/mol. The energy differences E(clust) - E(NMR) for each of the ten methyl groups range from -0.2 kcal/mol to +0.7 kcal/mol, with a mean value of +0.2 kcal/mol and a standard deviation of 0.3 kcal/mol. The differences between each of the computed barriers in the clusters (E(clust)) and the corresponding computed barriers in the isolated molecules (E(isol)) provide an estimate of the intermolecular contributions to the rotation barriers in the clusters. The values of E(clust) - E(isol) range from 0.0 to 1.0 kcal/mol.


Subject(s)
Naphthalenes/chemistry , Phenanthrenes/chemistry , Quantum Theory , Crystallization , Electrons , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure , Rotation , Stereoisomerism
14.
Inorg Chem ; 50(14): 6584-96, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21692496

ABSTRACT

Four Fe(III) compounds and one Fe(II) compound containing mononuclear, homoleptic, fluorinated phenolate anions of the form [Fe(OAr)(m)](n-) have been prepared in which Ar(F) = C(6)F(5) and Ar' = 3,5-C(6)(CF(3))(2)H(3): (Ph(4)P)(2)[Fe(OAr(F))(5)], 1, (Me(4)N)(2)[Fe(OAr(F))(5)], 2, {K(18-crown-6)}(2)[Fe(OAr(F))(5)], 3a, {K(18-crown-6)}(2)[Fe(OAr')(5)], 3b, and {K(18-crown-6)}(2)[Fe(OAr(F))(4)], 6. Two dinuclear Fe(III) compounds have also been prepared: {K(18-crown-6)}(2)[(OAr(F))(3)Fe(µ(2)-O)Fe(OAr(F))(3)], 4, and {K(18-crown-6)}(2)[(OAr(F))(3)Fe(µ(2)-OAr(F))(2)Fe(OAr(F))(3)], 5. These compounds have been characterized with UV-vis spectroscopy, elemental analysis, Evans method susceptibility, and X-ray crystallography. All-electron, geometry-optimized DFT calculations on four [Ti(IV)(OAr)(4)] and four [Fe(III)(OAr)(4)](-) species (Ar = 2,3,5,6-C(6)Me(4)H, C(6)H(5), 2,4,6-C(6)Cl(3)H(2), C(6)F(5)) with GGA-BP and hybrid B3LYP basis sets demonstrated that, under D(2d) symmetry, π donation from the O 2p orbitals is primarily into the d(xy) and d(z(2)) orbitals. The degree of donation is qualitatively consistent with expectations based on ligand Brønsted basicity and supports the contention that fluorinated phenolate ligands facilitate isolation of nonbridged homoleptic complexes due to their reduced π basicity at oxygen.


Subject(s)
Electrons , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Phenols/chemistry , Crystallography, X-Ray , Ferric Compounds/chemical synthesis , Ferrous Compounds/chemical synthesis , Models, Molecular , Molecular Conformation , Molecular Structure , Quantum Theory , Stereoisomerism
15.
Proc Natl Acad Sci U S A ; 105(24): 8185-90, 2008 Jun 17.
Article in English | MEDLINE | ID: mdl-18212121

ABSTRACT

A series of seven substituted 4,6-di-tert-butyl-2-(4,5-diarylimidazolyl)-phenols have been prepared and characterized, along with two related benzimidazole compounds. X-ray crystal structures of all of the compounds show that the phenol and imidazole rings are close to coplanar and are connected by an intramolecular ArOHN hydrogen bond. One-electron oxidation of these compounds occurs with movement of the phenolic proton to the imidazole base by concerted proton-electron transfer (CPET) to yield fairly stable distonic radical cations. These phenol-base compounds are a valuable system in which to examine the key features of CPET. Kinetic measurements of bimolecular CPET oxidations, with E(rxn) between +0.04 and -0.33 V, give rate constants from (6.3 +/- 0.6) x 10(2) to (3.0 +/- 0.6) x 10(6) M(-1) s(-1). There is a good correlation of log(k) with DeltaG degrees , with only one of the 15 rate constants falling more than a factor of 5.2 from the correlation line. Substituents on the imidazole affect the (O-HN) hydrogen bond, as marked by variations in the (1)H NMR and calculated vibrational spectra and geometries. Crystallographic d(ON) values appear to be more strongly affected by crystal packing forces. However, there is almost no correlation of rate constants with any of these measured or computed parameters. Over this range of compounds from the same structural family, the dominant contributor to the differences in rate constant is the driving force DeltaG degrees .


Subject(s)
Benzimidazoles/chemistry , Imidazoles/chemistry , Phenols/chemistry , Protons , Reactive Oxygen Species/chemistry , Crystallography, X-Ray , Electron Transport , Hydrogen Bonding , Kinetics , Molecular Structure , Oxidation-Reduction , Phenols/chemical synthesis , Thermodynamics
16.
Acta Crystallogr C Struct Chem ; 77(Pt 9): 537-543, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34482297

ABSTRACT

5α,14α-Androstane (C19H32) crystallizes in two different polymorphic forms in the same vapor diffusion experiment. The major form (Form I) crystallizes as thin plates in the space group P21, with Z = 4. These plates are twinned along a long c axis of length 43 Šand readily suffer from radiation damage when diffracted. The minor form (Form II) crystallizes as fine needles in the space group P212121, Z = 3. In the minor form, 5α,14α-androstane cocrystallizes with 5α,14α-androstan-17-one, an oxidation product of 5α,14α-androstane. The presence of 5α,14α-androstan-17-one in the minor form of the crystals was confirmed by HR-MS. Form II can be crystallized as a pure form without the ketone impurity using a different solvent system. High level density functional theory (DFT) lattice free energy calculations were performed and show that both pure forms are isoergic within the estimated error of the calculations.

17.
J Med Chem ; 64(7): 3940-3955, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33780623

ABSTRACT

Optimization of a series of aryl urea RAF inhibitors led to the identification of type II pan-RAF inhibitor GNE-0749 (7), which features a fluoroquinazolinone hinge-binding motif. By minimizing reliance on common polar hinge contacts, this hinge binder allows for a greater contribution of RAF-specific residue interactions, resulting in exquisite kinase selectivity. Strategic substitution of fluorine at the C5 position efficiently masked the adjacent polar NH functionality and increased solubility by impeding a solid-state conformation associated with stronger crystal packing of the molecule. The resulting improvements in permeability and solubility enabled oral dosing of 7. In vivo evaluation of 7 in combination with the MEK inhibitor cobimetinib demonstrated synergistic pathway inhibition and significant tumor growth inhibition in a KRAS mutant xenograft mouse model.


Subject(s)
Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Quinazolinones/therapeutic use , raf Kinases/antagonists & inhibitors , Animals , Azetidines/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dogs , Drug Combinations , Drug Synergism , Female , Humans , Madin Darby Canine Kidney Cells , Mice, Nude , Molecular Structure , Mutation , Phenylurea Compounds/chemistry , Phenylurea Compounds/metabolism , Piperidines/therapeutic use , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Quinazolinones/chemistry , Quinazolinones/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays , raf Kinases/genetics , raf Kinases/metabolism
18.
J Med Chem ; 64(16): 11841-11856, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34251202

ABSTRACT

Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Carbolines/therapeutic use , Estrogen Receptor Antagonists/therapeutic use , Estrogen Receptor alpha/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Carbolines/chemistry , Carbolines/pharmacokinetics , Dogs , Estrogen Receptor Antagonists/chemistry , Estrogen Receptor Antagonists/pharmacokinetics , Female , Humans , MCF-7 Cells , Macaca fascicularis , Mice , Molecular Structure , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
19.
J Med Chem ; 64(6): 2953-2966, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33682420

ABSTRACT

Nav1.7 is an extensively investigated target for pain with a strong genetic link in humans, yet in spite of this effort, it remains challenging to identify efficacious, selective, and safe inhibitors. Here, we disclose the discovery and preclinical profile of GDC-0276 (1) and GDC-0310 (2), selective Nav1.7 inhibitors that have completed Phase 1 trials. Our initial search focused on close-in analogues to early compound 3. This resulted in the discovery of GDC-0276 (1), which possessed improved metabolic stability and an acceptable overall pharmacokinetics profile. To further derisk the predicted human pharmacokinetics and enable QD dosing, additional optimization of the scaffold was conducted, resulting in the discovery of a novel series of N-benzyl piperidine Nav1.7 inhibitors. Improvement of the metabolic stability by blocking the labile benzylic position led to the discovery of GDC-0310 (2), which possesses improved Nav selectivity and pharmacokinetic profile over 1.


Subject(s)
Azetidines/pharmacology , Benzamides/pharmacology , Drug Discovery , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Azetidines/chemistry , Azetidines/pharmacokinetics , Benzamides/chemistry , Benzamides/pharmacokinetics , Cells, Cultured , HEK293 Cells , Humans , Piperidines/chemistry , Piperidines/pharmacokinetics , Piperidines/pharmacology , Rats, Sprague-Dawley , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
20.
J Am Chem Soc ; 132(14): 5043-53, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20334376

ABSTRACT

Dicationic (bpy)Pt(II) complexes were found to catalyze the intramolecular hydrohydrazination of alkenes. Reaction optimization revealed Pt(bpy)Cl(2) (10 mol %) and AgOTf (20 mol %) in DMF-d(7) to be an effective catalyst system for the conversion of substituted hydrazides to five- and six-membered N-amino lactams (N-amino = N-acetamido at 120 degrees C, N-phthalimido at 80 degrees C, (-)OTf = trifluoromethanesulfonate). Of the four possible regioisomeric products, only the product of 5-exo cyclization at the proximal nitrogen is formed, without reaction at the distal nitrogen or 6-endo cyclization. The resting states were found to be a 2:1 Pt-amidate complex (25, for N-acetamido) of the deprotonated hydrazide and a Pt-alkyl complex of the cyclized pyrrolidinone (20 for N-phthalimido). Both complexes are catalytically competent. Catalysis using 25 as the precatalyst shows no rate dependence on added acid (HOTf) or base (2,6-lutidine). The available mechanistic data are all consistent with a mechanism involving N-H activation of the hydrazide, followed by insertion of the alkene into the Pt-N bond, and finally protonation of the resulting cyclized alkyl complex by hydrazide to release the hydrohydrazination product and regenerate the active Pt-amidate catalyst.


Subject(s)
Hydralazine/chemistry , Hydralazine/chemical synthesis , Organoplatinum Compounds/chemistry , Platinum/chemistry , Alkenes/chemistry , Catalysis , Cyclization , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL