Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Prostate ; 80(1): 99-108, 2020 01.
Article in English | MEDLINE | ID: mdl-31742767

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA) is a well-established therapeutic and diagnostic target overexpressed in both primary and metastatic prostate cancers. PSMA antibody-drug conjugate (PSMA ADC) is a fully human immunoglobulin G1 anti-PSMA monoclonal antibody conjugated to monomethylauristatin E, which binds to PSMA-positive cells and induces cytotoxicity. In a phase 1 study, PSMA ADC was well tolerated and demonstrated activity as measured by reductions in serum prostate-specific antigen (PSA) and circulating tumor cells (CTCs). To further assess PSMA ADC, we conducted a phase 2 trial in metastatic castration-resistant prostate cancer (mCRPC) subjects who progressed following abiraterone/enzalutamide (abi/enz) therapy. METHODS: A total of 119 (84 chemotherapy-experienced and 35 chemotherapy-naïve) subjects were administered PSMA ADC 2.5 or 2.3 mg/kg IV q3w for up to eight cycles. Antitumor activity (best percentage declines in PSA and CTCs from baseline and tumor responses through radiological imaging), exploratory biomarkers, and safety (monitoring of adverse events [AEs], clinical laboratory tests, and Eastern Cooperative Oncology Group performance status) were assessed. RESULTS: PSA declines ≥50% occurred in 14% of all treated (n = 113) and 21% of chemotherapy-naïve subjects (n = 34). CTC declines ≥50% were seen in 78% of all treated (n = 77; number of subjects with ≥5 CTCs at baseline and a posttreatment result) and 89% of chemotherapy-naïve subjects (n = 19); 47% of all treated and 53% of chemotherapy-naïve subjects had a transition from ≥5 to less than 5 CTCs/7.5 mL blood at some point during the study. PSA and CTC reductions were associated with high PSMA expression (CTCs or tumor tissue) and low neuroendocrine serum markers. In the chemotherapy-experienced group, the best overall radiologic response to PSMA ADC treatment was stable disease in 51 (60.7%) subjects; 5.7% of subjects in the chemotherapy-naïve group had partial responses. The most common treatment-related AEs ≥Common Terminology Criteria for AE (CTCAE) grade 3 were neutropenia, fatigue, electrolyte imbalance, anemia, and neuropathy. The most common serious AEs were dehydration, hyponatremia, febrile neutropenia, and constipation. Two subjects who received 2.5 mg/kg died of sepsis. CONCLUSIONS: PSMA ADC demonstrated some activity with respect to PSA declines, CTC conversions/reductions, and radiologic assessments in abi/enz treated mCRPC subjects. Clinically significant treatment-related AEs included neutropenia and neuropathy.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Aged , Aged, 80 and over , Androstenes/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzamides , Biomarkers, Tumor/blood , Drug Resistance, Neoplasm , Humans , Immunotoxins/adverse effects , Immunotoxins/therapeutic use , Male , Middle Aged , Nitriles , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Survival Rate , Treatment Outcome
2.
Prostate ; 79(6): 604-613, 2019 05.
Article in English | MEDLINE | ID: mdl-30663074

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA) is a well-characterized target that is overexpressed selectively on prostate cancer cells. PSMA antibody-drug conjugate (ADC) is a fully human IgG1 monoclonal antibody conjugated to the microtubule disrupting agent monomethyl auristatin E (MMAE), which is designed to specifically bind PSMA-positive cells, internalize, and then release its cytotoxic payload into the cells. PSMA ADC has demonstrated potent and selective antitumor activity in preclinical models of advanced prostate cancer. A Phase 1 study was conducted to assess the safety, pharmacokinetics, and preliminary antitumor effects of PSMA ADC in subjects with treatment-refractory prostate cancer. METHODS: In this first-in-man dose-escalation study, PSMA ADC was administered by intravenous infusion every three weeks to subjects with progressive metastatic castration-resistant prostate cancer (mCRPC) who were previously treated with docetaxel chemotherapy. The primary endpoint was to establish a maximum tolerated dose (MTD). The study also examined the pharmacokinetics of the study drug, total antibody, and free MMAE. Antitumor effects were assessed by measuring changes in serum prostate-specific antigen (PSA), circulating tumor cells (CTCs), and radiologic imaging. RESULTS: Fifty-two subjects were administered doses ranging from 0.4 to 2.8 mg/kg. Subjects had a median of two prior chemotherapy regimens and prior treatment with abiraterone and/or enzalutamide. Neutropenia and peripheral neuropathy were identified as important first-cycle and late dose-limiting toxicities, respectively. The dose of 2.5 mg/kg was determined to be the MTD. Pharmacokinetics were approximately dose-proportional with minimal drug accumulation. Reductions in PSA and CTCs in subjects treated with doses of ≥1.8 mg/kg were durable and often concurrent. CONCLUSIONS: In an extensively pretreated mCRPC population, PSMA ADC demonstrated acceptable toxicity. Antitumor activity was observed over dose ranges up to and including 2.5 mg/kg. The observed anti-tumor activity supported further evaluation of this novel agent for the treatment of advanced metastatic prostate cancer.


Subject(s)
Antibodies, Monoclonal , Prostatic Neoplasms , Aged , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Dose-Response Relationship, Drug , Drug Monitoring/methods , Drug Resistance, Neoplasm , Humans , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/pharmacokinetics , Male , Middle Aged , Neoplasm Staging , Neoplastic Cells, Circulating/pathology , Oligopeptides/metabolism , Prostate-Specific Antigen/blood , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Treatment Outcome , Xenograft Model Antitumor Assays
3.
Prostate ; 76(3): 325-34, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26585210

ABSTRACT

BACKGROUND: Despite multiple new therapies available to patients with advanced castration-resistant prostate cancer (CRPC), the overall survival benefit still remains relatively short. Therefore, it is important to investigate additional treatment options that could achieve greater efficacy. Because of tumor heterogeneity and the development of resistance to treatment with single agents, combination therapies using existing drugs with new agents can potentially broaden individual therapeutic windows and achieve improved efficacy and safety profiles. The objective of the current studies was to evaluate the efficacy of combination of enzalutamide (ENZ) with prostate specific membrane antigen antibody drug conjugate (PSMA ADC) to inhibit CRPC patient-derived xenografts (PDX) in a preclinical setting. METHODS: Subcutaneous LuCaP 96CR prostate cancer PDX bearing mice were treated with a single dose of PSMA ADC (2.0 mg/kg) or 5 days a week ENZ (50 mg/kg) as monotherapy or with a combination of these two agents. The effects of the PSMA ADC+ENZ combination were compared to PSMA ADC alone, ENZ alone, and placebo control. IHC analyses were performed to determine PSMA, AR, ARV7, and GR expression and effects on proliferation. RESULTS: All treatments inhibited tumor progression but with different efficacy. At 6 weeks, in the control and ENZ groups all tumors were progressing, while in the PSMA ADC group only 5/11 were progressing, two remained unchanged and four tumors had decreased tumor volume. Moreover, all animals in the PSMA ADC+ENZ group had smaller tumors at week 6 when compared to their size at enrollment (week 0). A 14-week followup showed that all three treatments resulted in significant survival benefits but the combination effects were the most pronounced resulting in PSMA ADC+ENZ versus ENZ HR = 0.093 (P = 0.0045) and PSMA ADC+ENZ versus PSMA ADC HR = 0.051 (P = <0.0001) with no deaths observed in the combination group. CONCLUSIONS: Our results clearly indicate that the combination of PSMA ADC+ENZ possesses strong antitumor activity and significantly improves survival over ENZ monotherapy using the LuCaP 96CR PDX model. These results provide a strong rationale for clinical testing of PSMA ADC in combination with ENZ and/or other androgen-directed treatment strategies.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Disease Models, Animal , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/mortality , Animals , Antibodies, Monoclonal, Humanized , Benzamides , Cell Line, Tumor , Humans , Male , Mice , Nitriles , Phenylthiohydantoin/administration & dosage , Prostatic Neoplasms, Castration-Resistant/pathology , Survival Rate/trends , Xenograft Model Antitumor Assays/methods
4.
Prostate ; 75(3): 242-54, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25327687

ABSTRACT

BACKGROUND: Antibody-drug conjugates (ADCs) are an emerging class of cancer therapies that have demonstrated favorable activity both as single agents and as components of combination regimens. Phase 2 testing of an ADC targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer has shown antitumor activity. The present study examined PSMA ADC used in combination with potent antiandrogens (enzalutamide and abiraterone) and other compounds. METHODS: Antiproliferative activity and expression of PSMA, prostate-specific antigen and androgen receptor were evaluated in the prostate cancer cell lines LNCaP and C4-2. Cells were tested for susceptibility to antiandrogens or other inhibitors, used alone and in combination with PSMA ADC. Potential drug synergy or antagonism was evaluated using the Bliss independence method. RESULTS: Enzalutamide and abiraterone demonstrated robust, statistically significant synergy when combined with PSMA ADC. Largely additive activity was observed between the antiandrogens and the individual components of the ADC (free drug and unmodified antibody). Rapamycin also synergized with PSMA ADC in certain settings. Synergy was linked in part to upregulation of PSMA expression. In androgen-dependent LNCaP cells, enzalutamide and abiraterone each inhibited proliferation, upregulated PSMA expression, and synergized with PSMA ADC. In androgen-independent C4-2 cells, enzalutamide and abiraterone showed no measurable antiproliferative activity on their own but increased PSMA expression and synergized with PSMA ADC nonetheless. PSMA expression increased progressively over 3 weeks with enzalutamide and returned to baseline levels 1 week after enzalutamide removal. CONCLUSIONS: The findings support exploration of clinical treatment regimens that combine potent antiandrogens and PSMA-targeted therapies for prostate cancer.


Subject(s)
Androgen Antagonists/therapeutic use , Androstenes/therapeutic use , Antigens, Surface/immunology , Glutamate Carboxypeptidase II/immunology , Immunoconjugates/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/drug therapy , Receptors, Androgen/immunology , Antibodies , Benzamides , Cell Line, Tumor , Drug Delivery Systems , Humans , Male , Nitriles , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology
5.
Prostate ; 75(3): 303-13, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25327986

ABSTRACT

BACKGROUND: It is timely and important to develop new treatment modalities for advanced prostate cancer, because even the newly FDA approved treatments, despite providing significant survival benefits, do not constitute cure of this disease. Antibody drug conjugates (ADCs) represent a promising approach to cancer therapy. Prostate-specific membrane antigen (PSMA) is expressed in advanced prostate cancer and targeting this protein is used for imaging of advanced prostate cancer as well as development of targeting strategies. The objective of our studies was to evaluate the efficacy of PSMA ADC against a series of patient-derived prostate cancer xenografts (LuCaP 58, LuCaP 77, LuCaP 96CR, and LuCaP 105) with different characteristics, including varying levels of PSMA expression and responses to androgen suppression. METHODS: Mice bearing subcutaneous LuCaP prostate cancer-derived xenografts received PSMA antibody monomethyl auristatin E (MMAE) drug conjugate (PSMA ADC) in which the antibody and MMAE are linked via a protease-cleavable linker. PSMA ADC dose ranged from 1 to 6 mg/kg. Unmodified PSMA mAb + free MMAE at the amount equivalent to those contained in 6 mg/kg PSMA ADC was used as control. All treatments were administered once a week via tail-vein injections and repeated four times once a week and tumor responses were monitored for 10 weeks. IHC analyses were performed to determine PSMA and AR expression and effects on proliferation. RESULTS: Treatment responses varied widely across the tumor models, from complete tumor regressions in LuCaP 96CR to largely unimpeded tumor progression of LuCaP 58, which had the lowest baseline level of PSMA expression. Intermediate antitumor effects were seen for LuCaP 77 and LuCaP 105 tumors, despite their having similar basal expression of PSMA as LuCaP 96CR. Interestingly, we detected substantial differences in responses even within the same model, indicating that PSMA expression is not the only factor involved in treatment outcomes. CONCLUSIONS: Our results show high efficacy of PSMA ADC in advanced prostate cancer but also considerable variability in effects despite PSMA expression. Further studies to identify tumor characteristics that are predictive of treatment response are ongoing.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antigens, Surface/immunology , Drug Delivery Systems , Glutamate Carboxypeptidase II/immunology , Prostatic Neoplasms/drug therapy , Animals , Antibodies, Monoclonal, Humanized , Immunoconjugates , Male , Mice , Neoplasm Transplantation , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Treatment Outcome , Xenograft Model Antitumor Assays
6.
Endocr Relat Cancer ; 30(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36472300

ABSTRACT

The objective of this study is to present the complete biomarker response dataset from a pivotal trial evaluating the efficacy and safety of high-specific-activity I-131 meta-iodobenzylguanidine in patients with advanced pheochromocytoma or paraganglioma. Biomarker status was assessed and post-treatment responses were analyzed for catecholamines, metanephrines, and serum chromogranin A. Complete biomarker response (normalization) or partial response, defined as at least 50% reduction from baseline if above the normal range, was evaluated at specified time points over a 12-month period. These results were correlated with two other study objectives: blood pressure control and objective tumor response as per RECIST 1.0. In this open-label, single-arm study, 68 patients received at least one therapeutic dose (~18.5 GBq (~500 mCi)) of high-specific-activity I-131 meta-iodobenzylguanidine. Of the patients, 79% and 72% had tumors associated with elevated total plasma free metanephrines and serum chromogranin A levels, respectively. Best overall biomarker responses (complete or partial response) for total plasma free metanephrines and chromogranin A were observed in 69% (37/54) and 80% (39/49) of patients, respectively. The best response for individual biomarkers was observed 6-12 months following the first administration of high-specific-activity I-131 meta-iodobenzylguanidine. Biochemical tumor marker response was significantly associated with both reduction in antihypertensive medication use (correlation coefficient 0.35; P = 0.006) as well as objective tumor response (correlation coefficient 0.36; P = 0.007). Treatment with high-specific-activity I-131 meta-iodobenzylguanidine resulted in long-lasting biomarker responses in patients with advanced pheochromocytoma or paraganglioma that correlated with blood pressure control and objective response rate. ClinicalTrials.gov number: NCT00874614.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/diagnostic imaging , Pheochromocytoma/radiotherapy , 3-Iodobenzylguanidine/adverse effects , Iodine Radioisotopes/therapeutic use , Chromogranin A , Paraganglioma/diagnostic imaging , Paraganglioma/radiotherapy , Paraganglioma/drug therapy , Adrenal Gland Neoplasms/diagnostic imaging , Adrenal Gland Neoplasms/radiotherapy , Biomarkers, Tumor , Metanephrine
7.
J Nucl Med ; 60(5): 623-630, 2019 05.
Article in English | MEDLINE | ID: mdl-30291194

ABSTRACT

Patients with metastatic or unresectable (advanced) pheochromocytoma and paraganglioma (PPGL) have poor prognoses and few treatment options. This multicenter, phase 2 trial evaluated the efficacy and safety of high-specific-activity 131I-meta-iodobenzylguanidine (HSA 131I-MIBG) in patients with advanced PPGL. Methods: In this open-label, single-arm study, 81 PPGL patients were screened for enrollment, and 74 received a treatment-planning dose of HSA 131I-MIBG. Of these patients, 68 received at least 1 therapeutic dose (∼18.5 GBq) of HSA 131I-MIBG intravenously. The primary endpoint was the proportion of patients with at least a 50% reduction in baseline antihypertensive medication use lasting at least 6 mo. Secondary endpoints included objective tumor response as assessed by Response Evaluation Criteria in Solid Tumors version 1.0, biochemical tumor marker response, overall survival, and safety. Results: Of the 68 patients who received at least 1 therapeutic dose of HSA 131I-MIBG, 17 (25%; 95% confidence interval, 16%-37%) had a durable reduction in baseline antihypertensive medication use. Among 64 patients with evaluable disease, 59 (92%) had a partial response or stable disease as the best objective response within 12 mo. Decreases in elevated (≥1.5 times the upper limit of normal at baseline) serum chromogranin levels were observed, with confirmed complete and partial responses 12 mo after treatment in 19 of 28 patients (68%). The median overall survival was 36.7 mo (95% confidence interval, 29.9-49.1 mo). The most common treatment-emergent adverse events were nausea, myelosuppression, and fatigue. No patients had drug-related acute hypertensive events during or after the administration of HSA 131I-MIBG. Conclusion: HSA 131I-MIBG offers multiple benefits, including sustained blood pressure control and tumor response in PPGL patients.


Subject(s)
3-Iodobenzylguanidine/adverse effects , 3-Iodobenzylguanidine/therapeutic use , Adrenal Gland Neoplasms/radiotherapy , Paraganglioma/radiotherapy , Pheochromocytoma/radiotherapy , Safety , Adolescent , Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/pathology , Biomarkers, Tumor/metabolism , Female , Humans , Male , Paraganglioma/metabolism , Paraganglioma/pathology , Pheochromocytoma/metabolism , Pheochromocytoma/pathology , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL