Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Emerg Infect Dis ; 30(4): 770-774, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526209

ABSTRACT

In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Senegal/epidemiology , Serogroup , Environment , Dengue/epidemiology
2.
Emerg Infect Dis ; 29(9): 1808-1817, 2023 09.
Article in English | MEDLINE | ID: mdl-37610149

ABSTRACT

Historically low levels of seasonal influenza circulation were reported during the first years of the COVID-19 pandemic and were mainly attributed to implementation of nonpharmaceutical interventions. In tropical regions, influenza's seasonality differs largely, and data on this topic are scarce. We analyzed data from Senegal's sentinel syndromic surveillance network before and after the start of the COVID-19 pandemic to assess changes in influenza circulation. We found that influenza shows year-round circulation in Senegal and has 2 distinct epidemic peaks: during January-March and during the rainy season in August-October. During 2021-2022, the expected January-March influenza peak completely disappeared, corresponding to periods of active SARS-CoV-2 circulation. We noted an unexpected influenza epidemic peak during May-July 2022. The observed reciprocal circulation of SARS-CoV-2 and influenza suggests that factors such as viral interference might be at play and should be further investigated in tropical settings.


Subject(s)
COVID-19 , Influenza, Human , Humans , COVID-19/epidemiology , SARS-CoV-2 , Senegal/epidemiology , Influenza, Human/epidemiology , Pandemics
3.
Emerg Infect Dis ; 26(6): 1084-1090, 2020 06.
Article in English | MEDLINE | ID: mdl-32441631

ABSTRACT

During 2015-2016, Cape Verde, an island nation off the coast of West Africa, experienced a Zika virus (ZIKV) outbreak involving 7,580 suspected Zika cases and 18 microcephaly cases. Analysis of the complete genomes of 3 ZIKV isolates from the outbreak indicated the strain was of the Asian (not African) lineage. The Cape Verde ZIKV sequences formed a distinct monophylogenetic group and possessed 1-2 (T659A, I756V) unique amino acid changes in the envelope protein. Phylogeographic and serologic evidence support earlier introduction of this lineage into Cape Verde, possibly from northeast Brazil, between June 2014 and August 2015, suggesting cryptic circulation of the virus before the initial wave of cases were detected in October 2015. These findings underscore the utility of genomic-scale epidemiology for outbreak investigations.


Subject(s)
Microcephaly , Zika Virus Infection , Zika Virus , Africa, Western , Brazil/epidemiology , Cabo Verde , Disease Outbreaks , Genomics , Humans , Microcephaly/epidemiology , Zika Virus/genetics , Zika Virus Infection/epidemiology
4.
Parasitol Res ; 114(8): 3151-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26002826

ABSTRACT

Culicoides biting midges (Diptera: Ceratopogonidae) are important vectors of arboviruses in Africa. Culicoides oxystoma has been recently recorded in the Niayes region of Senegal (West Africa) and its high abundance on horses suggests a potential implication in the transmission of the African horse sickness virus in this region. This species is also suspected to transmit bluetongue virus to imported breeds of sheep. Little information is available on the biology and ecology of Culicoides in Africa. Therefore, understanding the circadian host-seeking activity of this putative vector is of primary importance to assess the risk of the transmission of Culicoides-borne pathogens. To achieve this objective, midges were collected using a sheep-baited trap over two consecutive 24-h periods during four seasons in 2012. A total of 441 Culicoides, belonging to nine species including 418 (94.8%) specimens of C. oxystoma, were collected. C. oxystoma presented a bimodal circadian host-seeking activity at sunrise and sunset in July and was active 3 h after sunrise in April. Daily activity appeared mainly related to time periods. Morning activity increased with the increasing temperature up to about 27 °C and then decreased with the decreasing humidity, suggesting thermal limits for C. oxystoma activity. Evening activity increased with the increasing humidity and the decreasing temperature, comprised between 20 and 27 °C according to seasons. Interestingly, males were more abundant in our sampling sessions, with similar activity periods than females, suggesting potential animal host implication in the facilitation of reproduction. Finally, the low number of C. oxystoma collected render practical vector-control recommendations difficult to provide and highlight the lack of knowledge on the bio-ecology of this species of veterinary interest.


Subject(s)
African Horse Sickness Virus/physiology , Bluetongue virus/physiology , Ceratopogonidae/physiology , Circadian Rhythm/physiology , Insect Vectors/physiology , Animals , Ceratopogonidae/virology , Female , Humidity , Insect Vectors/virology , Male , Seasons , Senegal
5.
IJID Reg ; 10: 100-107, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38204927

ABSTRACT

Objectives: Africa has experienced fewer COVID-19 cases and deaths than other regions, with a contrasting epidemiological situation between countries, raising questions regarding the determinants of disease spread in Africa. Methods: We built a susceptible-exposed-infected-recovered model including COVID-19 mortality data where recovery class is structured by specific immunization and modeled by a partial differential equation considering the opposed effects of immunity decline and immunization. This model was applied to Tunisia, Senegal, and Madagascar. Results: Senegal and Tunisia experienced two epidemic phases. Initially, infections emerged in naive individuals and were limited by social distancing. Variants of concern (VOCs) were also introduced. The second phase was characterized by successive epidemic waves driven by new VOCs that escaped host immunity. Meanwhile, Madagascar demonstrated a different profile, characterized by longer intervals between epidemic waves, increasing the pool of susceptible individuals who had lost their protective immunity. The impact of vaccination on model parameters in Tunisia and Senegal was evaluated. Conclusions: Loss of immunity and vaccination-induced immunity have played crucial role in controlling the African pandemic. SARS-CoV-2 has become endemic now and will continue to circulate in African populations. However, previous infections provide significant protection against severe diseases, thus providing a basis for future vaccination strategies.

6.
Int J Infect Dis ; 138: 54-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37995831

ABSTRACT

OBJECTIVES: Several factors can cause acute flaccid paralysis cases including non-polio enteroviruses. In Senegal, few studies on non-polio enteroviruses (NPEV) have been performed. METHODS: Our study assess the molecular epidemiology of non-polio enteroviruses in Senegal from 2013 to 2021 through the previously existing programs for surveillance of polioviruses. RESULTS: A total of 3815 stool samples and 281 sewage samples were collected. After virus isolation by cell culture, non-polio enteroviruses-positive isolates were confirmed by reverse transcriptase-quantitative polymerase chain reaction. Following this detection, the positive samples were subjected to molecular characterization. Our data showed that 15.22% and 52.66% were positive in cell culture for non-polio enteroviruses in acute flaccid paralysis surveillance and environmental surveillance, respectively. These non-polio enteroviruses-positive isolates were detected all year round but tend to unequal peaks of circulation, and the age group 0-5 years was more vulnerable to infection (84.4%). Genetic characterization revealed the circulation of enteroviruses species infecting humans (Enterovirus A - Enterovirus D): Enterovirus A (29.2%) and Enterovirus B (63.1%) isolates from both the acute flaccid paralysis surveillance and environmental surveillance while Enterovirus C (5.3%) and Enterovirus D (2.4%) were only isolated from the acute flaccid paralysis surveillance. However, the highly prevalent Enterovirus B species from the acute flaccid paralysis surveillance included echovirus 7 and echovirus 13, whereas coxsackievirus A6 was the predominant species from the environmental surveillance. CONCLUSION: This first 8-year period study of NPEV in Senegal showed that NPEV represent important viral etiologies associated with acute flaccid paralysis cases and circulating in environmental surveillance in Senegal and highlighted the need to promote effective long-term strategies for monitoring of non-polio enteroviruses infections.


Subject(s)
Enterovirus Infections , Enterovirus , Humans , Infant, Newborn , Infant , Child, Preschool , Sewage , Senegal/epidemiology , Paralysis/epidemiology , Enterovirus/genetics , Enterovirus Infections/epidemiology , Enterovirus B, Human , Antigens, Viral
7.
Emerg Microbes Infect ; 13(1): 2373308, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38934257

ABSTRACT

Chikungunya virus has caused millions of cases worldwide over the past 20 years, with recent outbreaks in Kedougou region in the southeastern Senegal, West Africa. Genomic characterization highlights that an ongoing epidemic in Kedougou in 2023 is not due to an introduction event but caused by the re-emergence of an endemic strain evolving linearly in a sylvatic context.


Subject(s)
Chikungunya Fever , Chikungunya virus , Disease Outbreaks , Genome, Viral , Phylogeny , Senegal/epidemiology , Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Humans , Chikungunya virus/genetics , Chikungunya virus/classification , Chikungunya virus/isolation & purification , Genomics , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Animals
8.
Infect Dis Model ; 8(4): 1079-1087, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37727806

ABSTRACT

This work addresses the problem of supervised classification for highly correlated high-dimensional data describing non-independent observations to identify SNPs related to a phenotype. We use a general penalized linear mixed model with a single random effect that performs simultaneous SNP selection and population structure adjustment in high-dimensional prediction models. Specifically, the model simultaneously selects variables and estimates their effects, taking into account correlations between individuals. Single nucleotide polymorphisms (SNPs) are a type of genetic variation and each SNP represents a difference in a single DNA building block, namely a nucleotide. Previous research has shown that SNPs can be used to identify the correct source population of an individual and can act in isolation or simultaneously to impact a phenotype. In this regard, the study of the contribution of genetics in infectious disease phenotypes is of great importance. In this study, we used uncorrelated variables from the construction of blocks of correlated variables done in a previous work to describe the most related observations of the dataset. The model was trained with 90% of the observations and tested with the remaining 10%. The best model obtained with the generalized information criterion (GIC) identified the SNP named rs2493311 located on the first chromosome of the gene called PRDM16 ((PR/SET domain 16)) as the most decisive factor in malaria attacks.

9.
IJID Reg ; 7: 216-221, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37153883

ABSTRACT

Objectives: Rift Valley Fever and Crimean-Congo Hemorrhagic Fever are two infections classified among the emerging diseases to be monitored with highest priority. Studies undertaken in human and animals have shown endemicity of these two arboviruses in several African countries. However, most of the investigations were carried out on domestic cattle and the studies conducted on human populations are either outdated or limited to a small number of well-known endemic areas. It is then critical to better evaluate the burden of these viruses in Senegal at a national scale. Methods: This work relies on a previous seroprevalence survey undertaken in all regions of Senegal at the end of 2020. The existing biobank was used to determine the immunoglobulin G [IgG] Rift Valley Fever and Crimean-Congo Hemorrhagic Fever seroprevalences by indirect enzyme-linked immunosorbent assay. Results: The crude seroprevalences of Rift Valley Fever and Crimean-Congo Hemorrhagic Fever were 3.94% and 0.7% respectively, with the northern and central part of the countries as the main exposed areas. However, acute infections reported in both high and low exposed regions suggest sporadic introductions. Conclusions: This study gives updated information and could be of interest to support the stakeholders in the management of these zoonoses.

10.
Infect Dis Model ; 8(1): 228-239, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36776734

ABSTRACT

Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.

11.
Sci Rep ; 13(1): 9121, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277417

ABSTRACT

During the COVID-19 pandemic in Senegal, contact tracing was done to identify transmission clusters, their analysis allowed to understand their dynamics and evolution. In this study, we used information from the surveillance data and phone interviews to construct, represent and analyze COVID-19 transmission clusters from March 2, 2020, to May 31, 2021. In total, 114,040 samples were tested and 2153 transmission clusters identified. A maximum of 7 generations of secondary infections were noted. Clusters had an average of 29.58 members and 7.63 infected among them; their average duration was 27.95 days. Most of the clusters (77.3%) are concentrated in Dakar, capital city of Senegal. The 29 cases identified as super-spreaders, i.e., the indexes that had the most positive contacts, showed few symptoms or were asymptomatic. Deepest transmission clusters are those with the highest percentage of asymptomatic members. The correlation between proportion of asymptomatic and degree of transmission clusters showed that asymptomatic strongly contributed to the continuity of transmission within clusters. During this pandemic, all the efforts towards epidemiological investigations, active case-contact detection, allowed to identify in a short delay growing clusters and help response teams to mitigate the spread of the disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Contact Tracing , Pandemics , Senegal/epidemiology
12.
BMJ Glob Health ; 7(2)2022 02.
Article in English | MEDLINE | ID: mdl-35193893

ABSTRACT

BACKGROUND: When vaccines against the novel COVID-19 were available in Senegal, many questions were raised. How long should non-pharmaceutical interventions (NPIs) be maintained during vaccination roll-out? What are the best vaccination strategies? METHODS: In this study, we used an age-structured dynamic mathematical model. This model uses parameters based on SARS-CoV-2 virus, information on different types of NPIs, epidemiological and demographic data, some parameters relating to hospitalisations and vaccination in Senegal. RESULTS: In all scenarios explored, the model predicts a larger third epidemic wave of COVID-19 in terms of new cases and deaths than the previous waves. In a context of limited vaccine supply, vaccination alone will not be sufficient to control the epidemic, and the continuation of NPIs is necessary to flatten the epidemic curve. Assuming 20% of the population have been vaccinated, the optimal period to relax NPIs would be a few days from the last peak. Regarding the prioritisation of age groups to be vaccinated, the model shows that it is better to vaccinate individuals aged 5-60 years and not just the elderly (over 60 years) and those in high-risk groups. This strategy could be more cost-effective for the government, as it would reduce the high costs associated with hospitalisation. In terms of vaccine distribution, the optimal strategy would be to allocate full dose to the elderly. If vaccine doses are limited, half dose followed by full dose would be sufficient for people under 40 years because whether they receive half or full dose, the reduction in hospitalisations would be similar and their death-to-case ratio is very low. CONCLUSIONS: This study could be presented as a decision support tool to help devise strategies to control the COVID-19 pandemic and help the Ministry of Health to better manage and allocate the available vaccine doses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Middle Aged , Pandemics , SARS-CoV-2 , Senegal/epidemiology , Vaccination , Young Adult
13.
Emerg Microbes Infect ; 11(1): 741-748, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35179429

ABSTRACT

We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7-62.1% transmission rates) and CVV 15041084 (27.3-48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.


Subject(s)
Aedes , Bunyamwera virus , Animals , Bunyamwera virus/genetics , Disease Vectors , Humans , Mosquito Vectors , New York
14.
Sci Rep ; 12(1): 17878, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284151

ABSTRACT

The Rapid proliferation of traditional gold mining sites in the Kedougou region has led to massive migration of people from neighbouring West African countries and the establishment of several small villages where poor hygiene and sanitation conditions exist. In this context, a Hepatitis E virus outbreak was reported in Kedougou in 2014 with several cases among the traditional mining workers. Herein, we described epidemiological and laboratory data collected during the outbreak's investigation from February 2012 to November 2014. Any suspected, contact or probable case was investigated, clinical and epidemiological data were collected. In our study, sera were collected and tested for viral RNA and anti-Hepatitis E virus (HEV) IgM. Archived serum samples from Kedougou were retrospectively screened by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). A total of 65 water samples collected from ponds and wells surrounding gold panners' sites and habitats and 75 tissues samples from rats captured in the environment of traditional gold mining sites were also tested. A total of 1617 sera were collected from 698 suspected cases, 862 contacts and 57 persons with missing information. The median age was 20 (1-88 years-old) and the sex ratio was 1.72. An overall rate of 64.62% (1045/1617) of these patients tested positive for HEV with a high case fatality rate in pregnant women. All water samples and animal tissues tested negative for HEV. Our data help not only determining of the beginning of the HEV outbreak to March 2012, but also identifying risk factors associated to its emergence. However, there is a need to implement routine diagnosis, surveillance and training of health personnel in order to reduce mortality especially among pregnant women. In addition, further studies are needed to identify the virus reservoir and environmental risk factors for HEV in the Kedougou region.


Subject(s)
Hepatitis E virus , Hepatitis E , Female , Humans , Pregnancy , Rats , Animals , RNA, Viral/genetics , Retrospective Studies , Senegal , Hepatitis E virus/genetics , Hepatitis Antibodies , Immunoglobulin M , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Gold , Water
15.
IJID Reg ; 3: 117-125, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35720135

ABSTRACT

Objectives: A nationwide cross-sectional epidemiological survey was conducted to capture the true extent of coronavirus disease 2019 (COVID-19) exposure in Senegal. Methods: Multi-stage random cluster sampling of households was performed between October and November 2020, at the end of the first wave of COVID-19 transmission. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies were screened using three distinct ELISA assays. Adjusted prevalence rates for the survey design were calculated for each test separately, and thereafter combined. Crude and adjusted prevalence rates based on test performance were estimated to assess the seroprevalence. As some samples were collected in high malaria endemic areas, the relationship between SARS-CoV-2 seroreactivity and antimalarial humoral immunity was also investigated. Results: Of the 1463 participants included in this study, 58.8% were female and 41.2% were male; their mean age was 29.2 years (range 0.20-84.8.0 years). The national seroprevalence was estimated at 28.4% (95% confidence interval 26.1-30.8%). There was substantial regional variability. All age groups were impacted, and the prevalence of SARS-CoV-2 was comparable in the symptomatic and asymptomatic groups. An estimated 4 744 392 (95% confidence interval 4 360 164-5 145 327) were potentially infected with SARS-CoV-2 in Senegal, while 16 089 COVID-19 RT-PCR laboratory-confirmed cases were reported by the national surveillance. No correlation was found between SARS-CoV-2 and Plasmodium seroreactivity. Conclusions: These results provide a better estimate of SARS-CoV-2 dissemination in the Senegalese population. Preventive and control measures need to be reinforced in the country and especially in the south border regions.

16.
PLoS One ; 17(9): e0274783, 2022.
Article in English | MEDLINE | ID: mdl-36126041

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) pandemic has spread from China to the rest of the world. Africa seems less impacted with lower number of cases and deaths than other continents. Senegal recorded its first case on March 2, 2020. We present here data collected from March 2 to October 31, 2020 in Senegal. METHODS: Socio-demographic, epidemiological, clinical and virological information were collected on suspected cases. To determine factors associated with diagnosed infection, symptomatic disease and death, multivariable binary logistic regression and log binomial models were used. Epidemiological parameters such as the reproduction number and growth rate were estimated. RESULTS: 67,608 suspected cases were tested by the IPD laboratories (13,031 positive and 54,577 negative). All age categories were associated with SARS-CoV-2 infection, but also patients having diabetes or hypertension or other cardiovascular diseases. With diagnosed infection, patients over 65 years and those with hypertension and cardiovascular disease and diabetes were highly associated with death. Patients with co-morbidities were associated with symptomatic disease, but only the under 15 years were not associated with. Among infected, 27.67% were asymptomatic (40.9% when contacts were systematically tested; 12.11% when only symptomatic or high-risk contacts were tested). Less than 15 years-old were mostly asymptomatic (63.2%). Dakar accounted for 81.4% of confirmed cases. The estimated mean serial interval was 5.57 (± 5.14) days. The average reproduction number was estimated at 1.161 (95%CI: 1.159-1.162), the growth rate was 0.031 (95%CI: 0.028-0.034) per day. CONCLUSIONS: Our findings indicated that factors associated with symptomatic COVID-19 and death are advanced age (over 65 years-old) and comorbidities such as diabetes and hypertension and cardiovascular disease.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus , Hypertension , Adolescent , Aged , COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Humans , Hypertension/epidemiology , Pandemics , SARS-CoV-2 , Senegal/epidemiology
17.
J Trop Med ; 2021: 8817987, 2021.
Article in English | MEDLINE | ID: mdl-33868410

ABSTRACT

Dengue virus (DENV) is the most prevalent arboviral threat worldwide. This virus belonging to genus Flavivirus, Flaviviridae family, is responsible for a wide spectrum of clinical manifestations, ranging from asymptomatic or mild febrile illness (dengue fever) to life-threatening infections (severe dengue). Many sporadic cases and outbreaks have occurred in Senegal since 1970. Nevertheless, this article describes a field investigation of suspected dengue cases, between 05 September 2017 and 17 December 2017 made possible by the deployment of a Mobile Biosafety Laboratory (MBS-Lab). Overall, 960 human sera were collected and tested in the field for the presence of viral RNA by real-time RT-PCR. Serotyping, sequencing of complete E gene, and phylogenetic analysis were also performed. Out of 960 suspected cases, 131 were confirmed dengue cases. The majority of confirmed cases were from Louga community. Serotyping revealed two serotypes, Dengue 1 (100/104; 96, 15%) and Dengue 2 (04/104; 3, 84%). Phylogenetic analysis of the sequences obtained indicated that the Dengue 1 strain was closely related to strains isolated, respectively, in Singapore (Asia) in 2013 (KX380803.1) outbreak and it cocirculated with a Dengue 2 strain closely related to strains from a Burkina Faso dengue outbreak in 2016 (KY62776.1). Our results showed the co-circulation of two dengue virus serotypes during a single outbreak in a short time period. This co-circulation highlighted the need to improve surveillance in order to prevent future potential severe dengue cases through antibody-dependent enhancement (ADE). Interestingly, it also proved the reliability and usefulness of the MBS-Lab for expedient outbreak response at the point of need, which allows early cases management.

18.
PeerJ ; 6: e6048, 2018.
Article in English | MEDLINE | ID: mdl-30533319

ABSTRACT

BACKGROUND: Host factors, including host genetic variation, have been shown to influence the outcome of Plasmodium falciparum infection. Genome-wide linkage studies have mapped mild malaria resistance genes on chromosome 6p21, whereas NCR3-412 polymorphism (rs2736191) lying within this region was found to be associated with mild malaria. METHODS: Blood samples were taken from 188 Plasmodium falciparum malaria patients (76 mild malaria patients, 85 cerebral malaria patients, and 27 severe non-cerebral malaria patients). NCR3-412 (rs2736191) was analysed by sequencing, and haematological parameters were measured. Finally, their association with clinical phenotypes was assessed. RESULTS: We evidenced an association of thrombocytopenia with both cerebral malaria and severe non-cerebral malaria, and of an association of high leukocyte count with cerebral malaria. Additionally, we found no association of NCR3-412 with either cerebral malaria, severe non-cerebral malaria, or severe malaria after grouping cerebral malaria and severe non-cerebral malaria patients. CONCLUSIONS: Our results suggest that NCR3 genetic variation has no effect, or only a small effect on the occurrence of severe malaria, although it has been strongly associated with mild malaria. We discuss the biological meaning of these results. Besides, we confirmed the association of thrombocytopenia and high leukocyte count with severe malaria phenotypes.

19.
Parasit Vectors ; 11(1): 341, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29884209

ABSTRACT

BACKGROUND: In Senegal, the last epidemic of African horse sickness (AHS) occurred in 2007. The western part of the country (the Niayes area) concentrates modern farms with exotic horses of high value and was highly affected during the 2007 outbreak that has started in the area. Several studies were initiated in the Niayes area in order to better characterize Culicoides diversity, ecology and the impact of environmental and climatic data on dynamics of proven and suspected vectors. The aims of this study are to better understand the spatial distribution and diversity of Culicoides in Senegal and to map their abundance throughout the country. METHODS: Culicoides data were obtained through a nationwide trapping campaign organized in 2012. Two successive collection nights were carried out in 96 sites in 12 (of 14) regions of Senegal at the end of the rainy season (between September and October) using OVI (Onderstepoort Veterinary Institute) light traps. Three different modeling approaches were compared: the first consists in a spatial interpolation by ordinary kriging of Culicoides abundance data. The two others consist in analyzing the relation between Culicoides abundance and environmental and climatic data to model abundance and investigate the environmental suitability; and were carried out by implementing generalized linear models and random forest models. RESULTS: A total of 1,373,929 specimens of the genus Culicoides belonging to at least 32 different species were collected in 96 sites during the survey. According to the RF (random forest) models which provided better estimates of abundances than Generalized Linear Models (GLM) models, environmental and climatic variables that influence species abundance were identified. Culicoides imicola, C. enderleini and C. miombo were mostly driven by average rainfall and minimum and maximum normalized difference vegetation index. Abundance of C. oxystoma was mostly determined by average rainfall and day temperature. Culicoides bolitinos had a particular trend; the environmental and climatic variables above had a lesser impact on its abundance. RF model prediction maps for the first four species showed high abundance in southern Senegal and in the groundnut basin area, whereas C. bolitinos was present in southern Senegal, but in much lower abundance. CONCLUSIONS: Environmental and climatic variables of importance that influence the spatial distribution of species abundance were identified. It is now crucial to evaluate the vector competence of major species and then combine the vector densities with densities of horses to quantify the risk of transmission of AHS virus across the country.


Subject(s)
African Horse Sickness/transmission , Bluetongue/transmission , Ceratopogonidae/physiology , Horse Diseases/transmission , Insect Vectors/physiology , African Horse Sickness/epidemiology , African Horse Sickness/virology , African Horse Sickness Virus/genetics , African Horse Sickness Virus/isolation & purification , African Horse Sickness Virus/physiology , Animal Distribution , Animals , Bluetongue/epidemiology , Bluetongue/virology , Bluetongue virus/genetics , Bluetongue virus/isolation & purification , Bluetongue virus/physiology , Ceratopogonidae/virology , Ecosystem , Horses , Insect Vectors/virology , Models, Statistical , Seasons , Senegal/epidemiology
20.
PLoS One ; 10(6): e0131021, 2015.
Article in English | MEDLINE | ID: mdl-26121048

ABSTRACT

In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work should also assess whether other trapping methods such as host-baited traps help reduce overdispersion.


Subject(s)
Ceratopogonidae/physiology , Models, Biological , Animals , Female , Multivariate Analysis , Reproducibility of Results , Senegal , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL