Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Stroke ; 55(6): 1676-1679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572634

ABSTRACT

BACKGROUND: The effects of lipid-lowering drug targets on different ischemic stroke subtypes are not fully understood. We aimed to explore the mechanisms by which lipid-lowering drug targets differentially affect the risk of ischemic stroke subtypes and their underlying pathophysiology. METHODS: Using a 2-sample Mendelian randomization approach, we assessed the effects of genetically proxied low-density lipoprotein cholesterol (LDL-c) and 3 clinically approved LDL-lowering drugs (HMGCR [3-hydroxy-3-methylglutaryl-CoA reductase], PCSK9 [proprotein convertase subtilisin/kexin type 9], and NPC1L1 [Niemann-Pick C1-Like 1]) on stroke subtypes and brain imaging biomarkers associated with small vessel stroke (SVS), including white matter hyperintensity volume and perivascular spaces. RESULTS: In genome-wide Mendelian randomization analyses, lower genetically predicted LDL-c was significantly associated with a reduced risk of any stroke, ischemic stroke, and large artery stroke, supporting previous findings. Significant associations between genetically predicted LDL-c and cardioembolic stroke, SVS, and biomarkers, perivascular space and white matter hyperintensity volume, were not identified in this study. In drug-target Mendelian randomization analysis, genetically proxied reduced LDL-c through NPC1L1 inhibition was associated with lower odds of perivascular space (odds ratio per 1-mg/dL decrease, 0.79 [95% CI, 0.67-0.93]) and with lower odds of SVS (odds ratio, 0.29 [95% CI, 0.10-0.85]). CONCLUSIONS: This study provides supporting evidence of a potentially protective effect of LDL-c lowering through NPC1L1 inhibition on perivascular space and SVS risk, highlighting novel therapeutic targets for SVS.


Subject(s)
Cerebral Small Vessel Diseases , Cholesterol, LDL , Ischemic Stroke , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Ischemic Stroke/genetics , Ischemic Stroke/diagnostic imaging , Cholesterol, LDL/blood , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/diagnostic imaging , Proprotein Convertase 9/genetics , Biomarkers/blood , Membrane Transport Proteins/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Brain/diagnostic imaging , Membrane Proteins/genetics , Genome-Wide Association Study , Female
2.
Eur J Nutr ; 62(3): 1551-1559, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36469110

ABSTRACT

Vitamin B12 is an essential nutrient that is not made by plants; consequently, unfortified plant-based foods are not a reliable supply. Recent estimates suggest high rates of vitamin B12 deficiency among the vegetarian and vegan populations, particularly in pregnant women or women of child-bearing age who, for ethical and health reasons, are shifting towards higher consumption of plant-based foods in ever-increasing numbers. Vitamin B12 plays crucial metabolic roles across the life-course and in particular during pregnancy and in early development (first 1000 days of life). Evidence now implicates vitamin B12 deficiency with increased risk to a range of neuro, vascular, immune, and inflammatory disorders. However, the current UK recommended nutrient intake for vitamin B12 does not adequately consider the vitamin B12 deficit for those choosing a plant-based diet, including vegetarianism and in particular veganism, representing a hidden hunger. We provide a cautionary note on the importance of preventing vitamin B12 deficits for those individuals choosing a plant-based diet and the health professionals advising them.


Subject(s)
Diet , Vitamin B 12 , Humans , Female , Pregnancy , Diet, Vegetarian/adverse effects , Diet, Vegan , Vitamins
3.
PLoS Med ; 19(12): e1004141, 2022 12.
Article in English | MEDLINE | ID: mdl-36580444

ABSTRACT

BACKGROUND: Fatty acids are important dietary factors that have been extensively studied for their implication in health and disease. Evidence from epidemiological studies and randomised controlled trials on their role in cardiovascular, inflammatory, and other diseases remains inconsistent. The objective of this study was to assess whether genetically predicted fatty acid concentrations affect the risk of disease across a wide variety of clinical health outcomes. METHODS AND FINDINGS: The UK Biobank (UKB) is a large study involving over 500,000 participants aged 40 to 69 years at recruitment from 2006 to 2010. We used summary-level data for 117,143 UKB samples (base dataset), to extract genetic associations of fatty acids, and individual-level data for 322,232 UKB participants (target dataset) to conduct our discovery analysis. We studied potentially causal relationships of circulating fatty acids with 845 clinical diagnoses, using mendelian randomisation (MR) approach, within a phenome-wide association study (PheWAS) framework. Regression models in PheWAS were adjusted for sex, age, and the first 10 genetic principal components. External summary statistics were used for replication. When several fatty acids were associated with a health outcome, multivariable MR and MR-Bayesian method averaging (MR-BMA) was applied to disentangle their causal role. Genetic predisposition to higher docosahexaenoic acid (DHA) was associated with cholelithiasis and cholecystitis (odds ratio per mmol/L: 0.76, 95% confidence interval: 0.66 to 0.87). This was supported in replication analysis (FinnGen study) and by the genetically predicted omega-3 fatty acids analyses. Genetically predicted linoleic acid (LA), omega-6, polyunsaturated fatty acids (PUFAs), and total fatty acids (total FAs) showed positive associations with cardiovascular outcomes with support from replication analysis. Finally, higher genetically predicted levels of DHA (0.83, 0.73 to 0.95) and omega-3 (0.83, 0.75 to 0.92) were found to have a protective effect on obesity, which was supported using body mass index (BMI) in the GIANT consortium as replication analysis. Multivariable MR analysis suggested a direct detrimental effect of LA (1.64, 1.07 to 2.50) and omega-6 fatty acids (1.81, 1.06 to 3.09) on coronary heart disease (CHD). MR-BMA prioritised LA and omega-6 fatty acids as the top risk factors for CHD. Although we present a range of sensitivity analyses to the address MR assumptions, horizontal pleiotropy may still bias the reported associations and further evaluation in clinical trials is needed. CONCLUSIONS: Our study suggests potentially protective effects of circulating DHA and omega-3 concentrations on cholelithiasis and cholecystitis and on obesity, highlighting the need to further assess them as prevention treatments in clinical trials. Moreover, our findings do not support the supplementation of unsaturated fatty acids for cardiovascular disease prevention.


Subject(s)
Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Genetic Predisposition to Disease , Humans , Bayes Theorem , Cholelithiasis/epidemiology , Cholelithiasis/genetics , Coronary Disease/epidemiology , Coronary Disease/genetics , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/genetics , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/genetics , Fatty Acids, Omega-6/blood , Fatty Acids, Omega-6/genetics , Mendelian Randomization Analysis/methods , Obesity/epidemiology , Obesity/genetics , Cholecystitis/epidemiology , Cholecystitis/genetics , Adult , Middle Aged , Aged , Male , Female
4.
FASEB J ; 33(1): 833-843, 2019 01.
Article in English | MEDLINE | ID: mdl-30080444

ABSTRACT

One-carbon metabolism provides a direct link among dietary folate/vitamin B12 exposure, the activity of the enzyme methylenetetrahydrofolate reductase (MTHFR), and epigenetic regulation of the genome via DNA methylation. Previously, it has been shown that the common c.677C > T polymorphism in MTHFR influences global DNA methylation status through a direct interaction with folate status and (indirectly) with total homocysteine (tHcy) levels. To build on that and other more recent observations that have further highlighted associations among MTHFR c.677C > T, tHcy, and aberrations in DNA methylation, we investigated whether the interaction between mildly elevated plasma tHcy and the c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. We used data on plasma tHcy levels, c.677C > T polymorphism, and site-specific DNA methylation levels for a total of 915 white women and 335 men from the TwinsUK registry ( n = 610) and the Rotterdam study ( n = 670). We performed methylome-wide association analyses in each cohort to model the interaction between levels of tHcy and c.677C > T genotypes on DNA methylation ß values. Our meta-analysis identified 13 probes significantly associated with rs1801133 × tHcy levels [false-discovery rate (FDR) < 0.05]. The most significant associations were with a cluster of probes at the AGTRAP-MTHFR-NPPA/B gene locus on chromosome 1 (FDR = 1.3E-04), with additional probes on chromosomes 2, 3, 4, 7, 12, 16, and 19. Our top 2 hits on chromosome 1 were functionally associated with variability in expression of the TNF receptor superfamily member 8 ( TNFRSF8) gene/locus on that chromosome. This is the first study, to our knowledge, to provide a direct link between perturbations in 1-carbon metabolism, through an interaction of tHcy and the activity of MTHFR enzyme on epigenetic regulation of the genome via DNA methylation.-Nash, A. J., Mandaviya, P. R., Dib, M.-J., Uitterlinden, A. G., van Meurs, J., Heil, S. G., Andrew, T., Ahmadi, K. R. Interaction between plasma homocysteine and the MTHFR c.677C>T polymorphism is associated with site-specific changes in DNA methylation in humans.


Subject(s)
DNA Methylation , Homocysteine/blood , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Polymorphism, Genetic , Aged , Chromosome Mapping , Cohort Studies , Dietary Supplements , Epigenesis, Genetic , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Twin Studies as Topic , Vitamins/administration & dosage
5.
Br J Nutr ; 122(2): 121-130, 2019 07 28.
Article in English | MEDLINE | ID: mdl-31362796

ABSTRACT

Rapid advances in 'omics' technologies have paved the way forward to an era where more 'precise' approaches - 'precision' nutrition - which leverage data on genetic variability alongside the traditional indices, have been put forth as the state-of-the-art solution to redress the effects of malnutrition across the life course. We purport that this inference is premature and that it is imperative to first review and critique the existing evidence from large-scale epidemiological findings. We set out to provide a critical evaluation of findings from genome-wide association studies (GWAS) in the roadmap to precision nutrition, focusing on GWAS of micronutrient disposition. We found that a large number of loci associated with biomarkers of micronutrient status have been identified. Mean estimates of heritability of micronutrient status ranged between 20 and 35 % for minerals, 56-59 % for water-soluble and 30-70 % for fat-soluble vitamins. With some exceptions, the majority of the identified genetic variants explained little of the overall variance in status for each micronutrient, ranging between 1·3 and 8 % (minerals), <0·1-12 % (water-soluble) and 1·7-2·3 % for (fat-soluble) vitamins. However, GWAS have provided some novel insight into mechanisms that underpin variability in micronutrient status. Our findings highlight obvious gaps that need to be addressed if the full scope of precision nutrition is ever to be realised, including research aimed at (i) dissecting the genetic basis of micronutrient deficiencies or 'response' to intake/supplementation (ii) identifying trans-ethnic and ethnic-specific effects (iii) identifying gene-nutrient interactions for the purpose of unravelling molecular 'behaviour' in a range of environmental contexts.


Subject(s)
Genome-Wide Association Study , Micronutrients/genetics , Nutrition Therapy/methods , Nutritional Status/genetics , Precision Medicine/methods , Diet , Dietary Supplements , Humans , Micronutrients/administration & dosage , Micronutrients/deficiency , Minerals , Polymorphism, Single Nucleotide/genetics , Solubility , Vitamins
6.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798566

ABSTRACT

Aortic structure and function impact cardiovascular health through multiple mechanisms. Aortic structural degeneration increases left ventricular afterload, pulse pressure and promotes target organ damage. Despite the impact of aortic structure on cardiovascular health, aortic 3D-geometry has yet to be comprehensively assessed. Using a convolutional neural network (U-Net) combined with morphological operations, we quantified aortic 3D-geometric phenotypes (AGPs) from 53,612 participants in the UK Biobank and 8,066 participants in the Penn Medicine Biobank. AGPs reflective of structural aortic degeneration, characterized by arch unfolding, descending aortic lengthening and luminal dilation exhibited cross-sectional associations with hypertension and cardiac diseases, and were predictive for new-onset hypertension, heart failure, cardiomyopathy, and atrial fibrillation. We identified 237 novel genetic loci associated with 3D-AGPs. Fibrillin-2 gene polymorphisms were identified as key determinants of aortic arch-3D structure. Mendelian randomization identified putative causal effects of aortic geometry on the risk of chronic kidney disease and stroke.

7.
Sci Rep ; 14(1): 14743, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926411

ABSTRACT

Low concentrations of circulating 25-hydroxy-vitamin D are observationally associated with an increased risk of subclinical atherosclerosis and cardiovascular disease. However, randomized controlled trials have not reported the beneficial effects of vitamin D supplementation on atherosclerotic cardiovascular disease (ASCVD) outcomes. Whether genetically predicted vitamin D status confers protection against the development of carotid artery plaque, a powerful predictor of subclinical atherosclerosis, remains unknown. We conducted a two-sample Mendelian randomization (MR) study to explore the association of genetically predicted vitamin D status and deficiency with the risk of developing carotid artery plaque. We leveraged three genome-wide association studies (GWAS) of vitamin D status and one GWAS of vitamin D deficiency. We used the inverse-variance weighted (IVW) approach as our main method, and MR-Egger, weighted-median, and radialMR as MR sensitivity analyses. We also conducted sensitivity analyses using biologically plausible genetic instruments located within genes encoding for vitamin D metabolism (GC, CYP2R1, DHCR7, CYP24A1). We did not find significant associations between genetically predicted vitamin D status (Odds ratio (OR) = 0.99, P = 0.91) and deficiency (OR = 1.00, P = 0.97) with the risk of carotid artery plaque. We additionally explored the potential causal effect of vitamin D status on coronary artery calcification (CAC) and carotid intima-media thickness (cIMT), two additional markers of subclinical atherosclerosis, and we did not find any significant association (ßCAC = - 0.14, P = 0.23; ßcIMT = 0.005, P = 0.19). These findings did not support the causal effects of vitamin D status and deficiency on the risk of developing subclinical atherosclerosis.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Plaque, Atherosclerotic , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D/blood , Vitamin D/analogs & derivatives , Vitamin D Deficiency/genetics , Vitamin D Deficiency/complications , Plaque, Atherosclerotic/genetics , Carotid Artery Diseases/genetics , Polymorphism, Single Nucleotide , Risk Factors , Genetic Predisposition to Disease , Female , Male , Carotid Arteries/pathology , Carotid Arteries/diagnostic imaging
8.
Genes (Basel) ; 15(1)2024 01 04.
Article in English | MEDLINE | ID: mdl-38254961

ABSTRACT

OBJECTIVE: The association of cerebrospinal fluid (CSF) protein levels with cognitive function in the general population remains largely unexplored. We performed Mendelian randomization (MR) analyses to query which CSF proteins may have potential causal effects on cognitive performance. METHODS AND ANALYSIS: Genetic associations with CSF proteins were obtained from a genome-wide association study conducted in up to 835 European-ancestry individuals and for cognitive performance from a meta-analysis of GWAS including 257,841 European-ancestry individuals. We performed Mendelian randomization (MR) analyses to test the effect of randomly allocated variation in 154 genetically predicted CSF protein levels on cognitive performance. Findings were validated by performing colocalization analyses and considering cognition-related phenotypes. RESULTS: Genetically predicted C1-esterase inhibitor levels in the CSF were associated with a better cognitive performance (SD units of cognitive performance per 1 log-relative fluorescence unit (RFU): 0.23, 95% confidence interval: 0.12 to 0.35, p = 7.91 × 10-5), while tyrosine-protein kinase receptor Tie-1 (sTie-1) levels were associated with a worse cognitive performance (-0.43, -0.62 to -0.23, p = 2.08 × 10-5). These findings were supported by colocalization analyses and by concordant effects on distinct cognition-related and brain-volume measures. CONCLUSIONS: Human genetics supports a role for the C1-esterase inhibitor and sTie-1 in cognitive performance.


Subject(s)
Complement C1 Inhibitor Protein , Proteome , Humans , Cognition , Esterases , Genome-Wide Association Study , Mendelian Randomization Analysis , Meta-Analysis as Topic , Proteome/genetics
9.
J Am Heart Assoc ; 13(14): e032192, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38979809

ABSTRACT

BACKGROUND: Early age at menarche (AAM) has been associated with a higher risk of carotid artery intima-media thickness (cIMT), an indicator of subclinical vascular disease, albeit the mechanisms underlying this association remain elusive. A better understanding of the relationship between AAM, modifiable cardiometabolic risk factors, and subclinical atherosclerosis may contribute to improved primary prevention and cardiovascular disease treatment. We aimed to investigate the putative causal role of AAM on cIMT, and to identify and quantify the potentially mediatory effects of cardiometabolic risk factors underlying this relationship. METHODS AND RESULTS: We conducted linkage disequilibrium score regression analyses between our exposure of interest, AAM, our outcome of interest, cIMT and potential mediators of the AAM-cIMT association to gauge cross-trait genetic overlap. We considered as mediators the modifiable anthropometric risk factors body mass index (BMI), systolic blood pressure (SBP), lipid traits (total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol), and glycemic traits (fasting glucose). We then leveraged the paradigm of Mendelian randomization to infer causality between AAM and cIMT, and to identify whether cardiometabolic risk factors served as potential mediators of this effect. Our analyses showed that genetically predicted AAM was inversely associated with cIMT, BMI, SBP, and triglycerides, and positively associated with high-density lipoprotein, low-density lipoprotein, and total cholesterol. We showed that the effect of genetically predicted AAM on cIMT may be partially mediated through BMI (20.1% [95% CI, 1.4% to 38.9%]) and SBP (13.5% [95% CI, 0.5%-26.6%]). Our cluster-specific Mendelian randomization revealed heterogeneous causal effect estimates of age at menarche on BMI and SBP. CONCLUSIONS: We highlight supporting evidence for a potential causal association between earlier AAM and cIMT, and almost one third of the effect of AAM on cIMT may be mediated by BMI and SBP. Early intervention aimed at lowering BMI and hypertension may be beneficial in reducing the risk of developing subclinical atherosclerosis due to earlier age at menarche.


Subject(s)
Body Mass Index , Carotid Intima-Media Thickness , Hypertension , Menarche , Mendelian Randomization Analysis , Humans , Female , Menarche/genetics , Hypertension/genetics , Hypertension/epidemiology , Hypertension/physiopathology , Age Factors , Male , Carotid Artery Diseases/genetics , Carotid Artery Diseases/epidemiology , Carotid Artery Diseases/diagnostic imaging , Atherosclerosis/genetics , Atherosclerosis/epidemiology , Sex Factors , Risk Factors , Adolescent , Blood Pressure/genetics , Risk Assessment , Asymptomatic Diseases , Cardiometabolic Risk Factors
10.
Circ Heart Fail ; 17(2): e011146, 2024 02.
Article in English | MEDLINE | ID: mdl-38299345

ABSTRACT

BACKGROUND: NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels are variably elevated in heart failure with preserved ejection fraction (HFpEF), even in the presence of increased left ventricular filling pressures. NT-proBNP levels are prognostic in HFpEF and have been used as an inclusion criterion for several recent randomized clinical trials. However, the underlying biologic differences between HFpEF participants with high and low NT-proBNP levels remain to be fully understood. METHODS: We measured 4928 proteins using an aptamer-based proteomic assay (SOMAScan) in available plasma samples from 2 cohorts: (1) Participants with HFpEF enrolled in the PHFS (Penn Heart Failure Study; n=253); (2) TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) participants in the Americas (n=218). We assessed the relationship between SOMAScan-derived plasma NT-proBNP and levels of other proteins available in the SOMAScan assay version 4 using robust linear regression, with correction for multiple comparisons, followed by pathway analysis. RESULTS: NT-proBNP levels exhibited prominent proteome-wide associations in PHFS and TOPCAT cohorts. Proteins most strongly associated with NT-proBNP in both cohorts included SVEP1 (sushi, von Willebrand factor type-A, epidermal growth factor, and pentraxin domain containing 1; ßTOPCAT=0.539; P<0.0001; ßPHFS=0.516; P<0.0001) and ANGPT2 (angiopoietin 2; ßTOPCAT=0.571; P<0.0001; ßPHFS=0.459; P<0.0001). Canonical pathway analysis demonstrated consistent associations with multiple pathways related to fibrosis and inflammation. These included hepatic fibrosis and inhibition of matrix metalloproteases. Analyses using cut points corresponding to estimated quantitative concentrations of 360 pg/mL (and 480 pg/mL in atrial fibrillation) revealed similar proteomic associations. CONCLUSIONS: Circulating NT-proBNP levels exhibit prominent proteomic associations in HFpEF. Our findings suggest that higher NT-proBNP levels in HFpEF are a marker of fibrosis and inflammation. These findings will aid the interpretation of NT-proBNP levels in HFpEF and may guide the selection of participants in future HFpEF clinical trials.


Subject(s)
Heart Failure , Natriuretic Peptide, Brain , Humans , Stroke Volume/physiology , Heart Failure/diagnosis , Heart Failure/drug therapy , Proteomics , Prognosis , Peptide Fragments , Inflammation , Fibrosis , Biomarkers
11.
J Am Heart Assoc ; 13(5): e031154, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38420755

ABSTRACT

BACKGROUND: Identifying novel molecular drivers of disease progression in heart failure (HF) is a high-priority goal that may provide new therapeutic targets to improve patient outcomes. The authors investigated the relationship between plasma proteins and adverse outcomes in HF and their putative causal role using Mendelian randomization. METHODS AND RESULTS: The authors measured 4776 plasma proteins among 1964 participants with HF with a reduced left ventricular ejection fraction enrolled in PHFS (Penn Heart Failure Study). Assessed were the observational relationship between plasma proteins and (1) all-cause death or (2) death or HF-related hospital admission (DHFA). The authors replicated nominally significant associations in the Washington University HF registry (N=1080). Proteins significantly associated with outcomes were the subject of 2-sample Mendelian randomization and colocalization analyses. After correction for multiple testing, 243 and 126 proteins were found to be significantly associated with death and DHFA, respectively. These included small ubiquitin-like modifier 2 (standardized hazard ratio [sHR], 1.56; P<0.0001), growth differentiation factor-15 (sHR, 1.68; P<0.0001) for death, A disintegrin and metalloproteinase with thrombospondin motifs-like protein (sHR, 1.40; P<0.0001), and pulmonary-associated surfactant protein C (sHR, 1.24; P<0.0001) for DHFA. In pathway analyses, top canonical pathways associated with death and DHFA included fibrotic, inflammatory, and coagulation pathways. Genomic analyses provided evidence of nominally significant associations between levels of 6 genetically predicted proteins with DHFA and 11 genetically predicted proteins with death. CONCLUSIONS: This study implicates multiple novel proteins in HF and provides preliminary evidence of associations between genetically predicted plasma levels of 17 candidate proteins and the risk for adverse outcomes in human HF.


Subject(s)
Heart Failure , Proteomics , Humans , Blood Proteins , Stroke Volume , Ventricular Function, Left , Mendelian Randomization Analysis
12.
Article in English | MEDLINE | ID: mdl-38550935

ABSTRACT

Cardiovascular diseases (CVDs) are complex in their aetiology, arising due to a combination of genetics, lifestyle and environmental factors. By nature of this complexity, different CVDs vary in their molecular mechanisms, clinical presentation and progression. Although extensive efforts are being made to develop novel therapeutics for CVDs, genetic heterogeneity is often overlooked in the development process. By considering molecular mechanisms at an individual and ancestral level, a richer understanding of the influence of environmental and lifestyle factors can be gained and more refined therapeutic interventions can be developed. It is therefore expedient to understand the molecular and clinical heterogeneity in CVDs that exists across different populations. In this review, we highlight how the mechanisms underlying CVDs vary across diverse population ancestry groups due to genetic heterogeneity. We then discuss how such genetic heterogeneity is being leveraged to inform therapeutic interventions and personalised medicine, highlighting examples across the CVD spectrum. Finally, we present an overview of how polygenic risk scores and Mendelian randomisation can foster more robust insight into disease mechanisms and therapeutic intervention in diverse populations. Fulfilment of the vision of precision medicine requires more exhaustive leveraging of the genetic variability across diverse ancestry populations to improve our understanding of disease onset, progression and response to therapeutic intervention.

13.
Am J Cardiol ; 206: 312-319, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37734292

ABSTRACT

Proteinuria is common in heart failure with preserved ejection fraction (HFpEF), but its biologic correlates are poorly understood. We assessed the relation between 49 plasma proteins and the urinary protein/creatinine ratio (UPCR) in 365 participants in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial. Linear regression and network analysis were used to represent relations between protein biomarkers and UPCR. Higher UPCR was associated with older age, a greater proportion of female gender, smaller prevalence of previous myocardial infarction, and greater prevalence of diabetes, insulin use, smoking, and statin use, in addition to a lower estimated glomerular filtration rate, hematocrit, and diastolic blood pressure. Growth differentiation factor 15 (GDF-15; ß = 0.15, p <0.0001), followed by N-terminal proatrial natriuretic peptide (NT-proANP; ß = 0.774, p <0.0001), adiponectin (ß = 0.0005, p <0.0001), fibroblast growth factor 23 (FGF-23, ß = 0.177; p <0.0001), and soluble tumor necrosis factor receptors I (ß = 0.002, p <0.0001) and II (ß = 0.093, p <0.0001) revealed the strongest associations with UPCR. Network analysis showed that UPCR is linked to various proteins primarily through FGF-23, which, along with GDF-15, indicated node characteristics with strong connectivity, whereas UPCR did not. In a model that included FGF-23 and UPCR, the former was predictive of the risk of death or heart-failure hospital admission (standardized hazard ratio 1.83, 95% confidence interval 1.49 to 2.26, p <0.0001) and/or all-cause death (standardized hazard ratio 1.59, 95% confidence interval 1.22 to 2.07, p = 0.0005), whereas UPCR was not prognostic. Proteinuria in HFpEF exhibits distinct proteomic correlates, primarily through its association with FGF-23, a well-known prognostic marker in HFpEF. However, in contrast to FGF-23, UPCR does not hold independent prognostic value.


Subject(s)
Heart Failure , Humans , Female , Growth Differentiation Factor 15 , Creatinine , Stroke Volume/physiology , Proteomics , Biomarkers , Prognosis , Proteinuria
14.
Nutrients ; 14(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36501061

ABSTRACT

Variation in vitamin B12 levels has been associated with a range of diseases across the life-course, the causal nature of which remains elusive. We aimed to interrogate genetically predicted vitamin B12 status in relation to a plethora of clinical outcomes available in the UK Biobank. Genome-wide association study (GWAS) summary data obtained from a Danish and Icelandic cohort of 45,576 individuals were used to identify 8 genetic variants associated with vitamin B12 levels, serving as genetic instruments for vitamin B12 status in subsequent analyses. We conducted a Mendelian randomisation (MR)-phenome-wide association study (PheWAS) of vitamin B12 status with 945 distinct phenotypes in 439,738 individuals from the UK Biobank using these 8 genetic instruments to proxy alterations in vitamin B12 status. We used external GWAS summary statistics for replication of significant findings. Correction for multiple testing was taken into consideration using a 5% false discovery rate (FDR) threshold. MR analysis identified an association between higher genetically predicted vitamin B12 status and lower risk of vitamin B deficiency (including all B vitamin deficiencies), serving as a positive control outcome. We further identified associations between higher genetically predicted vitamin B12 status and a reduced risk of megaloblastic anaemia (OR = 0.35, 95% CI: 0.20-0.50) and pernicious anaemia (0.29, 0.19-0.45), which was supported in replication analyses. Our study highlights that higher genetically predicted vitamin B12 status is potentially protective of risk of vitamin B12 deficiency associated with pernicious anaemia diagnosis, and reduces risk of megaloblastic anaemia. The potential use of genetically predicted vitamin B12 status in disease diagnosis, progression and management remains to be investigated.


Subject(s)
Anemia, Megaloblastic , Anemia, Pernicious , Vitamin B 12 Deficiency , Humans , Anemia, Megaloblastic/complications , Anemia, Pernicious/complications , Genome-Wide Association Study , Vitamin B 12 , Vitamin B 12 Deficiency/genetics , Vitamin B 12 Deficiency/complications , Vitamins , Mendelian Randomization Analysis
15.
Sci Rep ; 11(1): 14757, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285312

ABSTRACT

In this study, we determined the incidence and risk factors of Carbapenem-resistant Enterobacterales (CRE) acquisition in inpatients with 3rd generation cephalosporin-resistant (3GCR) Enterobacterales at a tertiary-care hospital in Lebanon, and suggested a risk prediction score for it. This is a retrospective matched case-control study of inpatients with 3GCR Enterobacterales that are carbapenem resistant (cases) versus those with carbapenem-sensitive isolates (controls). Data analysis was performed on IBM SPSS program, version 23.0 (Armonk, NY, USA: IBM Corp.). Categorical variables were compared between cases and controls through bivariate analysis and those with statistical significance (P < 0.05) were included in the forward stepwise multiple logistic regression analysis. To develop the CRE acquisition risk score, variables that maintained statistical significance in the multivariate model were assigned a point value corresponding to the odds ratio (OR) divided by the smallest OR identified in the regression model, and the resulting quotient was multiplied by two and rounded to the nearest whole number. Summation of the points generated by the calculated risk factors resulted in a quantitative score that was assigned to each patient in the database. Predictive performance was determined by assessing discrimination and calibration. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated for different cutoffs of the score. The incidence of CRE acquisition significantly increased with time from 0.21 cases/1000 patient-days (PD) in 2015 to 1.89 cases/1000PD in 2019 (r2 = 0.789, P = 0.041). Multivariate analysis of matched data revealed that the history of cerebrovascular disease (OR 1.96; 95% CI 1.04-3.70; P = 0.039), hematopoietic cells transplantation (OR 7.75; 95% CI 1.52-39.36; P = 0.014), presence of a chronic wound (OR 3.38; 95% CI 1.73-6.50; P < 0.001), endoscopy done during the 3 months preceding the index hospitalization (OR 2.96; 95% CI 1.51-4.73; P = 0.01), nosocomial site of acquisition of the organism in question (OR 2.68; 95% CI 1.51-4.73; P = 0.001), and the prior use of meropenem within 3 months of CRE acquisition (OR 5.70; 95% CI 2.61-12.43; P < 0.001) were independent risk factors for CRE acquisition. A risk score ranging from 0 to 25 was developed based on these independent variables. At a cut-off of ≥ 5 points, the model exhibited a sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 64.5%, 85.8%, 82%, 70.7% and 75%, respectively. We also showed that only meropenem consumption intensity and CRE acquisition incidence density showed a strong positive correlation(r = 0.798, P = 0.106), unlike imipenem (r = - 0.868, P = 0.056) and ertapenem (r = 0.385, P = 0.522). Patients with a score of ≥ 5 points in our model were likely to acquire CRE. Only meropenem was associated with CRE carriage. Our proposed risk prediction score would help target surveillance screening for CRE amongst inpatients at the time of hospital admission and properly guide clinicians on using anti-CRE therapy.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cephalosporins/therapeutic use , Enterobacteriaceae Infections/drug therapy , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Area Under Curve , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Case-Control Studies , Cephalosporins/pharmacology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Female , Hospitalization , Humans , Incidence , Inpatients , Male , Microbial Sensitivity Tests , Middle Aged , Odds Ratio , ROC Curve , Retrospective Studies , Risk Factors
16.
Front Nutr ; 8: 789357, 2021.
Article in English | MEDLINE | ID: mdl-35155515

ABSTRACT

BACKGROUND: Inadequate provision of vitamin B12 during pregnancy is associated with a number of adverse maternal and fetal outcomes. We set out to (1) suggest pregnancy-specific reference ranges for a range of biomarkers of vitamin B12; (2) assess the temporal behaviors of these markers over the course of pregnancy; and (3) test whether any biomarkers, including the genetic marker HIBCH rs291466 strongly associated with MMA measured early in pregnancy could reliably and significantly predict future B12 status within a healthy UK population of pregnant women. MATERIALS AND METHODS: We used existing biobank samples from the placebo arm of the UK Selenium in PRegnancy Intervention (SPRINT) study, to generate biochemical data for serum folate, B12, holotranscobalamin (HoloTC), total homocysteine (tHcy), and MMA, calculate cB12, and genotyped the polymorphism rs291466 in gene HIBCH on a total of n=114 women across trimesters 1-3 of their pregnancy. We performed a series of exploratory cross-sectional and longitudinal analyses to investigate levels at each trimester, suggest references ranges, evaluate changes and correlations between the B12 biomarkers, and assess the predictive capabilities of each biomarker from 12-weeks to 35-weeks of gestation. RESULTS: Significant changes in all vitamin B12 biomarker values were observed over the three trimesters (P < 0.05). Our study shows that cB12 values were largely constant and stable throughout trimester 1 (T1) and T2 (i.e., up to week 20), but declined significantly in T3 (-66% | P < 0.001). Yet, cB12 generally remained within the normal boundaries. We identified pregnancy and trimester-specific reference ranges for each biomarker at each trimester, notably for total serum B12. This marker fell below the recommended cut-offs in 1/3 of the cohort at the third trimester, contrasting other markers (mostly normal). Our multivariate analyses indicated that none of the biomarkers could reliably and accurately predict any other biomarkers than themselves later in pregnancy. Yet, HoloTC seems to be a promising predictor within the limitations of our cohort, constituted of B12-replete individuals. Most notably, cB12 did not significantly predict itself between trimesters. Finally, we show that the HIBCH variant has little predictive power for MMA or cB12 as it does not explain the significant increase in MMA concentrations nor the decline of cB12 throughout pregnancy. CONCLUSION: Trimester-specific reference ranges for biomarkers of vitamin B12 in normal pregnancy are suggested. However, these biomarkers have limited predictive value in identifying mothers at elevated risk of vitamin B12 insufficiency/deficiency during pregnancy.

17.
J Nutr Biochem ; 70: 156-163, 2019 08.
Article in English | MEDLINE | ID: mdl-31203192

ABSTRACT

Vitamin B12 deficiency is common among older adults. However, the most commonly used marker of deficiency, total serum vitamin B12 (B12), is not sensitive enough to diagnose true deficiency in a significant proportion of the population. The combined indicator of B12 status (cB12), formulated as a composite score of various biomarkers of vitamin B12 status (which also accounts for low folate status and age) has been shown to offer a more robust and powerful test to diagnose B12 deficiency. There are no epidemiological studies of cB12 variability in older adults. We carried out a twin study to characterize the relative contribution of heritable (h2) and environmental factors to the observed variability in cB12 score in an adult and older adult population (n=378). Furthermore, we tested for association between variability in cB12 and candidate polymorphisms and genes previously associated with B12 biomarker levels characterized in silico the mechanism linking the genetic variants and cB12 variability. We found the variability in cB12 and its constituents to be highly heritable (h2=55%-64%). The single nucleotide polymorphism rs291466 in HIBCH, previously associated with variation in MMA, was significantly associated with cB12 (R2=5%, P=5E-04). Furthermore, variants in MTRR, MMAB and MUT, underlying inborn errors of B12 metabolism, were nominally associated with variation in cB12. Pathway accompanied by expression quantitative trait loci analysis revealed that HIBCH rs291466 influences the concentration of MMA via the valine degradation pathway. Our study provides etiological insight into how B12 deficiency can manifest into impaired mitochondrial function through perturbations in mitochondrial "fuel" usage.


Subject(s)
Energy Metabolism , Ferredoxin-NADP Reductase/genetics , Metabolism, Inborn Errors/genetics , Mitochondria/metabolism , Thiolester Hydrolases/genetics , Vitamin B 12/metabolism , Adult , Aged , Aged, 80 and over , Alkyl and Aryl Transferases/genetics , Biomarkers/metabolism , Female , Genome-Wide Association Study , Homocysteine/blood , Humans , Male , Methylmalonic Acid/blood , Methylmalonyl-CoA Mutase/genetics , Middle Aged , Molecular Epidemiology , Polymorphism, Single Nucleotide , Transcobalamins/metabolism , Valine/metabolism
18.
Epigenomics ; 11(3): 281-296, 2019 02.
Article in English | MEDLINE | ID: mdl-30753117

ABSTRACT

AIM: To assess whether DNA methylation of monocytes play a role in the development of acute diabetic Charcot foot (CF). PATIENTS & METHODS: We studied the whole methylome (WM) of circulating monocytes in 18 patients with Type 2 diabetes (T2D) and acute CF, 18 T2D patients with equivalent neuropathy and 18 T2D patients without neuropathy, using the enhanced reduced representation bisulfite sequencing technique. RESULTS & CONCLUSION: WM analysis demonstrated that CF monocytes are differentially methylated compared with non-CF monocytes, in both CpG-site and gene-mapped analysis approaches. Among the methylated genes, several are involved in the migration process during monocyte differentiation into osteoclasts or are indirectly involved through the regulation of inflammatory pathways. Finally, we demonstrated an association between methylation and gene expression in cis- and trans-association.


Subject(s)
Diabetic Foot/etiology , Diabetic Foot/metabolism , Epigenome , Gene Expression Regulation , Monocytes/metabolism , Osteoclasts/metabolism , Adult , Biomarkers , Computational Biology/methods , CpG Islands , DNA Methylation , Diabetes Mellitus, Type 2 , Diabetic Foot/pathology , Diabetic Neuropathies/etiology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/pathology , Epigenomics/methods , Female , Gene Regulatory Networks , Humans , Male , Middle Aged , Monocytes/immunology , Osteoclasts/immunology
SELECTION OF CITATIONS
SEARCH DETAIL