Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Malar J ; 23(1): 55, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395885

ABSTRACT

BACKGROUND: Plasmodium vivax Duffy binding protein (PvDBP) is a merozoite surface protein located in the micronemes of P. vivax. The invasion of human reticulocytes by P. vivax merozoites depends on the parasite DBP binding domain engaging Duffy Antigen Receptor for Chemokine (DARC) on these red blood cells (RBCs). PvDBPII shows high genetic diversity which is a major challenge to its use in the development of a vaccine against vivax malaria. METHODS: A cross-sectional study was conducted from February 2021 to September 2022 in five study sites across Ethiopia. A total of 58 blood samples confirmed positive for P. vivax by polymerase chain reaction (PCR) were included in the study to determine PvDBPII genetic diversity. PvDBPII were amplified using primers designed from reference sequence of P. vivax Sal I strain. Assembling of sequences was done using Geneious Prime version 2023.2.1. Alignment and phylogenetic tree constructions using MEGA version 10.1.1. Nucleotide diversity and haplotype diversity were analysed using DnaSP version 6.12.03, and haplotype network was generated with PopART version 1.7. RESULTS: The mean age of the participants was 25Ā years, 5 (8.6%) participants were Duffy negatives. From the 58 PvDBPII sequences, seven haplotypes based on nucleotide differences at 8 positions were identified. Nucleotide diversity and haplotype diversity were 0.00267 Ā± 0.00023 and 0.731 Ā± 0.036, respectively. Among the five study sites, the highest numbers of haplotypes were identified in Arbaminch with six different haplotypes while only two haplotypes were identified in Gambella. The phylogenetic tree based on PvDBPII revealed that parasites of different study sites shared similar genetic clusters with few exceptions. Globally, a total of 39 haplotypes were identified from 223 PvDBPII sequences representing different geographical isolates obtained from NCBI archive. The nucleotide and haplotype diversity were 0.00373 and 0.845 Ā± 0.015, respectively. The haplotype prevalence ranged from 0.45% to 27.3%. Two haplotypes were shared among isolates from all geographical areas of the globe. CONCLUSIONS: PvDBPII of the Ethiopian P. vivax isolates showed low nucleotide but high haplotype diversity, this pattern of genetic variability suggests that the population may have undergone a recent expansion. Among the Ethiopian P. vivax isolates, almost half of the sequences were identical to the Sal-I reference sequence. However, there were unique haplotypes observed in the Ethiopian isolates, which does not share with isolates from other geographical areas. There were two haplotypes that were common among populations across the globe. Categorizing population haplotype frequency can help to determine common haplotypes for designing an effective blood-stage vaccine which will have a significant role for the control and elimination of P. vivax.


Subject(s)
Malaria, Vivax , Vaccines , Humans , Adult , Plasmodium vivax , Phylogeny , Ethiopia/epidemiology , Cross-Sectional Studies , Selection, Genetic , Protozoan Proteins/metabolism , Antigens, Protozoan/genetics , Malaria, Vivax/parasitology , Haplotypes , Nucleotides , Genetic Variation
2.
BMC Infect Dis ; 23(1): 801, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974079

ABSTRACT

Malaria is a significant global health concern, with a majority of cases in Sub-Saharan African nations. Numerous antimalarial drugs have been developed to counter the rampant prevalence of Plasmodium falciparum malaria. Artemisinin-based Combination Therapy (ACT) has served as the primary treatment of uncomplicated malaria in Ghana since 2005. However, a growing concern has emerged due to the escalating reports of ACT resistance, particularly in Southeast Asia, and its encroachment into Africa. Specifically, mutations in the Kelch propeller domain on chromosome 13 (Pfk13) have been linked to ACT resistance. Yet, our understanding of mutation prevalence in Africa remains largely uncharted. In this study, we compared Pfk13 sequences obtained from 172 P. falciparum samples across three ecological and transmission zones in Ghana. We identified 27 non-synonymous mutations among these sequences, of which two of the mutations, C580Y (found in two samples from the central region) and Y493H (found in one sample from the north), had previously been validated for their association with artemisinin resistance, a phenomenon widespread in Southeast Asia. The Pfk13 gene diversity was most pronounced in the northern savannah than the central forest and south coastal regions, where transmission rates are lower. The observed mutations were not significantly associated with geographical regions, suggesting a frequent spread of mutations across the country. The ongoing global surveillance of artemisinin resistance remains pivotal, and our findings provides insights into the potential spread of resistant parasites in West Africa. Furthermore, the identification of novel codon mutations in this study raises their potential association to ACT resistance, warranting further investigation through in vitro assays to ascertain their functional significance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Artemisinins/pharmacology , Artemisinins/therapeutic use , Ghana/epidemiology , Drug Resistance/genetics , Protozoan Proteins/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Polymorphism, Genetic , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mutation
3.
BMC Infect Dis ; 21(1): 439, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33985447

ABSTRACT

BACKGROUND: Genetic diversity in Plasmodium falciparum populations can be used to describe the resilience and spatial distribution of the parasite in the midst of intensified intervention efforts. This study used microsatellite analysis to evaluate the genetic diversity and population dynamics of P. falciparum parasites circulating in three ecological zones of Ghana. METHODS: A total of 1168 afebrile children aged between 3 to 13 years were recruited from five (5) Primary schools in 3 different ecological zones (Sahel (Tamale and Kumbungu), Forest (Konongo) and Coastal (Ada and Dodowa)) of Ghana. Asymptomatic malaria parasite carriage was determined using microscopy and PCR, whilst fragment analysis of 6 microsatellite loci was used to determine the diversity and population structure of P. falciparum parasites. RESULTS: Out of the 1168 samples examined, 16.1 and 39.5% tested positive for P. falciparum by microscopy and nested PCR respectively. The genetic diversity of parasites in the 3 ecological zones was generally high, with an average heterozygosity (He) of 0.804, 0.787 and 0.608 the rainy (peak) season for the Sahel, Forest and Coastal zones respectively. The mean He for the dry (off-peak) season were 0.562, 0.693 and 0.610 for the Sahel, Forest and Coastal zones respectively. Parasites from the Forest zone were more closely related to those from the Sahel than from the Coastal zone, despite the Coastal zone being closer in physical distance to the Forest zone. The fixation indexes among study sites ranged from 0.049 to 0.112 during the rainy season and 0.112 to 0.348 during the dry season. CONCLUSION: A large asymptomatic parasite reservoir was found in the school children during both rainy and dry seasons, especially those in the Forest and Sahel savannah zones where parasites were also found to be related compared to those from the Coastal zone. Further studies are recommended to understand why despite the roll out of several malaria interventions in Ghana, high transmission still persist.


Subject(s)
Carrier State/parasitology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Adolescent , Carrier State/epidemiology , Child , Child, Preschool , DNA, Protozoan/genetics , Female , Genetic Variation , Genetics, Population , Ghana/epidemiology , Humans , Malaria, Falciparum/epidemiology , Male , Microsatellite Repeats/genetics , Plasmodium falciparum/cytology , Plasmodium falciparum/isolation & purification , Seasons
4.
Infect Genet Evol ; 123: 105643, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053565

ABSTRACT

Plasmodium vivax, traditionally overlooked has experienced a notable increase in cases in East Africa. This study investigated the geographical origin and genetic diversity of P. vivax in Sudan using 14 microsatellite markers. A total of 113 clinical P. vivax samples were collected from two different ecogeographical zones, New Halfa and Khartoum, in Sudan. Additionally, 841 geographical samples from the database were incorporated for a global genetic analysis to discern genetic relationships among P. vivax isolates on regional and worldwide scales. On the regional scale, our findings revealed 91 unique and 8 shared haplotypes among the Sudan samples, showcasing a remarkable genetic diversity compared to other geographical isolates and supporting the hypothesis that P. vivax originated from Africa. On a global scale, distinct genetic clustering of P. vivax isolates from Africa, South America, and Asia (including Papua New Guinea and Solomon Island) was observed, with limited admixture among the three clusters. Principal component analysis emphasized the substantial contribution of African isolates to the observed global genetic variation. The Sudanese populations displayed extensive genetic diversity, marked by significant multi-locus linkage disequilibrium, suggesting an ancestral source of P. vivax variation globally and frequent recombination among the isolates. Notably, the East African P. vivax exhibited similarity with some Asian isolates, indicating potential recent introductions. Overall, our results underscore the effectiveness of utilizing microsatellite markers for implementing robust control measures, given their ability to capture extensive genetic diversity and linkage disequilibrium patterns.


Subject(s)
Genetic Variation , Haplotypes , Linkage Disequilibrium , Malaria, Vivax , Microsatellite Repeats , Plasmodium vivax , Sudan/epidemiology , Plasmodium vivax/genetics , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/epidemiology , Phylogeny , Phylogeography
5.
Infect Genet Evol ; 110: 105418, 2023 06.
Article in English | MEDLINE | ID: mdl-36841398

ABSTRACT

In October 2021, the world's first malaria vaccine RTS,S was endorsed by WHO for broad use in children, despite its low efficacy. This study examined polyclonal infections and the associations of parasite genetic variations with binding affinity to human leukocyte antigen (HLA). Multiplicity of infection was determined by amplicon deep sequencing of PfMSP1. Genetic variations in PfCSP were examined across 88 samples from Ghana and analyzed together with 1655 PfCSP sequences from other African and non-African isolates. Binding interactions of PfCSP peptide variants and HLA were predicted using NetChop and HADDOCK. High polyclonality was detected among infections, with each infection harboring multiple non-3D7 PfCSP variants. Twenty-seven PfCSP haplotypes were detected in the Ghanaian samples, and they broadly represented PfCSP diversity across Africa. The number of genetic differences between 3D7 and non-3D7 PfCSP variants does not influence binding to HLA. However, CSP peptide length after proteolytic degradation significantly affects its molecular weight and binding affinity to HLA. Despite the high diversity of HLA, the majority of the HLAI and II alleles interacted/bound with all Ghana CSP peptides. Multiple non-3D7 strains among P. falciparum infections could impact the effectiveness of RTS,S. Longer peptides of the Th2R/Th3R CSP regions should be considered in future versions of RTS,S.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Child , Humans , Malaria Vaccines/genetics , Plasmodium falciparum , Ghana/epidemiology , Vaccine Efficacy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Protozoan Proteins , Immunoproteins/genetics , Immunoproteins/metabolism , Histocompatibility Antigens Class II/genetics , Genetic Variation
6.
Am J Trop Med Hyg ; 103(5): 1902-1909, 2020 11.
Article in English | MEDLINE | ID: mdl-32840197

ABSTRACT

In malaria-endemic countries, rapid diagnostic tests (RDTs) targeting Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and lactate dehydrogenase (PfLDH) have been widely used. However, little is known regarding the diagnostic performances of these RDTs in the Assosa zone of northwest Ethiopia. The objective of this study was to determine the diagnostic performances of PfHRP2 and PfLDH RDTs using microscopy and quantitative PCR (qPCR) as a reference test. A health facility-based cross-sectional study design was conducted from malaria-suspected study participants at selected health centers from November to December 2018. Finger-prick blood samples were collected for microscopy, RDTs, and qPCR method. The prevalence of P. falciparum was 26.4%, 30.3%, and 24.1% as determined by microscopy, PfHRP2 RDT, and PfLDH RDT, respectively. Compared with microscopy, the sensitivity and specificity of the PfHRP2 RDT were 96% and 93%, respectively, and those of the PfLDH RDT were 89% and 99%, respectively. Compared with qPCR, the specificity of the PfHRP2 RDT (93%) and PfLDH RDT (98%) was high, but the sensitivity of the PfHRP2 RDT (77%) and PfLDH RDT (70%) was relatively low. These malaria RDTs and reference microscopy methods showed reasonable agreement with a kappa value above 0.85 and provided accurate diagnosis of P. falciparum malaria. Thus, the current malaria RDT in the Ministry of Health program can be used in the Assosa zone of Ethiopia. However, continuous monitoring of the performance of PfHRP2 RDT is important to support control and elimination of malaria in Ethiopia.


Subject(s)
Antigens, Protozoan/immunology , Diagnostic Tests, Routine/methods , L-Lactate Dehydrogenase/immunology , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/immunology , Adolescent , Adult , Antigens, Protozoan/genetics , Child , Child, Preschool , Cross-Sectional Studies , Demography , Ethiopia , Female , Geography , Humans , L-Lactate Dehydrogenase/genetics , Malaria, Falciparum/parasitology , Male , Microscopy , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Polymerase Chain Reaction , Protozoan Proteins/genetics , Sensitivity and Specificity , Young Adult
7.
Genes (Basel) ; 10(7)2019 07 16.
Article in English | MEDLINE | ID: mdl-31315304

ABSTRACT

Malaria is a significant public health problem in Ghana. Seasonal Malaria Chemoprevention (SMC) using a combination of sulfadoxine-pyrimethamine and amodiaquine has been implemented since 2015 in northern Ghana where malaria transmission is intense and seasonal. In this study, we estimated the prevalence of asymptomatic P. falciparum carriers in three ecological zones of Ghana, and compared the sensitivity and specificity of different molecular methods in identifying asymptomatic infections. Moreover, we examined the frequency of mutations in pfcrt, pfmdr1,pfdhfr, and pfdhps that relate to the ongoing SMC. A total of 535 asymptomatic schoolchildren were screened by microscopy and PCR (18s rRNA and TARE-2) methods. Among all samples, 28.6% were detected as positive by 18S nested PCR, whereas 19.6% were detected by microscopy. A high PCR-based asymptomatic prevalence was observed in the north (51%) compared to in the central (27.8%) and south (16.9%). The prevalence of pfdhfr-N51I/C59R/S108N/pfdhps-A437G quadruple mutant associated with sulfadoxine-pyrimethamine resistance was significantly higher in the north where SMC was implemented. Compared to 18S rRNA, TARE-2 serves as a more sensitive molecular marker for detecting submicroscopic asymptomatic infections in high and low transmission settings. These findings establish a baseline for monitoring P. falciparum prevalence and resistance in response to SMC over time.


Subject(s)
Drug Resistance , Genes, Protozoan , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Seasons , Antimalarials/pharmacology , Antimalarials/therapeutic use , Asymptomatic Diseases , Chemoprevention , Ghana/epidemiology , Haplotypes , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Mutation , Prevalence , Public Health Surveillance , RNA, Ribosomal, 18S/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL